Particle Size Analysis for Homogenization Process Development

Daniel Huang
Novartis Pharmaceuticals
Horiba Seminar
September 20, 2012
Outline

- Background
- Study Objective
- Equipment Operating Principles
- Emulsion Preparation Process
- Instrument for Evaluation
- Laboratory Study Results
- Summary
Pulmonary Drug Delivery Product Life Cycle

Formulation
- Dose
- Chemical/Physical Stability
- Solid-state properties
- Excipients

Particle Engineering
- Aerodynamics
- Dispersability
- Process control
- Scale up

User Technology Synthesis

Aerosol Delivery
- Patient’s needs
- Reproducible
- Easy to use & reliable

Fine powders
- Low mass, tight RSD
- Remain dispersable
- Billions/year

Filling & Packaging

Powder Processing

Synthesis
Methods to Produce Fine Particles for Pharmaceutical Applications

Molecule

- Spray Drying
- SCF
- Lyophilization
- Crystallization
- Attrition / Jet Milling

Emulsion Based

- Solution Based

Fine Particles (MMAD ~ 1-5 mm)

PulmoSphere® Technology
Novartis PulmoSphere Technology

- Manufacture of a Fluorocarbon-in-Water Emulsion
- Excipients primarily composed of phospholipids
 - Perfluorocarbons added as a processing aid
 - Removed in the process
Manufacture of *PulmoSphere* Particles

- **Atomization**
 - Homogeneous droplet

- **Drying**
 - Hot air drying

- **Collection**
 - Cyclone or filter collection

Stage I
- Water loss & particle formation

Stage II
- Blowing agent removal
- Blowing agent

Emulsion
- Homogeneous droplet

Drop radius

Suspension

Solution

Components
- FC
- Water + Drug
- Heat
- H₂O
PulmoSphere Particle Characteristics

- **Particle Physical Properties**
 - Hollow and porous
 - Surface roughness
 - Low density

- **Particle Performance Attributes**
 - Flowability
 - Dispersibility
 - Aerodynamic
The objective of this study is to develop a robust homogenization process for making pharmaceutical emulsions by evaluating droplet size distribution.

Homogenization is a fluid mechanical process that involves the subdivision of droplets or particles into nanometer or micron sizes to create a stable emulsion or dispersion for further processing. This technology is one of most efficient means for size reduction.
Criteria for Evaluating High-Pressure Homogenizers

- Mean Particle Size
- Particle Size Distribution
- Emulsion Stability
- Cycle Time
- CIP/SIP Capability
- Scale Up Capability
- Routine Operation
- Maintenance
High-Pressure Homogenizer Systems

- High-pressure homogenizers generally consist of a high-pressure pump, mostly in the form of a one- to three-piston plunger pump which can be electrically or pneumatically actuated, an interaction assembly, and a cooling unit. High-pressure interaction assembly can be subdivided into three different types:

<table>
<thead>
<tr>
<th>Types</th>
<th>Manufacturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radial Diffusers/Valves</td>
<td>Avestin, APV, Niro…</td>
</tr>
<tr>
<td>Nozzle Aggregates</td>
<td>BEE, Kombi-Blende…</td>
</tr>
<tr>
<td>Counter-jet Dispergators</td>
<td>Microfluidics, Bayer, Nanoject…</td>
</tr>
</tbody>
</table>
Homogenization Principles

- High-pressure processing equipment for reducing droplet or suspension particle size primarily involves four mechanisms:
 - Shear - is caused by elongation and subsequent breakup of droplets, due to acceleration of a liquid
 - Turbulence - is caused by high velocity fluid resulting in chaotic motion to tear apart the globules
 - Impact - is caused by impinging of pressurized fluid on a hard surface breaking globules into smaller droplets
 - Cavitation - is caused by an intense pressure drop, leading to formation of vapor bubbles in the liquid, which implode causing shock waves in the fluid

Homogenizers, available from different manufacturers operate based on combination of these mechanical forces
Process and Product Parameters

- **Processes**
 - Configuration (gap, length, shape, and size)
 - Pressure drop
 - Residence time
 - Cooling efficiency (temperature control)

- **Product**
 - Concentration
 - Viscosity (ratio and individual)
 - Interfacial tension (surfactant amount and adsorption rate)
 - Coalescence rate (Gibbs elasticity)
 - Temperature sensitivity
Equipment for Evaluation - Microfluidics

- **Microfluidics: M-110EH**
 - Microfluidics combines high flow with high-pressure, scalable fixed-geometry interaction chambers that impart high shear rates to product formulations
 - The entire product experiences identical processing conditions, producing the desired results, including: uniform particle and efficient droplet size reduction
Emulsion Preparation Process

- Aqueous phase prepared with lipid surfactant
- Addition of modifier
- Pre-mix: Oil phase is slowly added to aqueous phase while mixing with a high-speed rotor/stator mixer
- High pressure homogenization
Process Parameters Evaluated

- Pressure Drop
- Configuration
- Number of Passes
- Temperature Control
Desirable Quality Attributes

- **Mean Particle Size**
 - Less than 0.8 micron (fine emulsion)

- **Polydispersity**
 - RSD Less than 10% (narrow distribution)

- **Emulsion Stability**
 - Less than 10-20% change in particle size or particle size distribution over extended period of time (long hold time)
Instrumentation Used For Evaluation

- **Instrument for determining emulsion size**
 - Photo sedimentation – CPS
 - Dynamic light scattering – Malvern Zetasizer
 - Static light scattering – Horiba LA-950

- **Criteria for choosing particle size analyzer**
 - Wide dynamic range
 - Broad applications
 - Accuracy and precision
 - Short cycle times (sample prep, measurement, and cleaning)
 - Ease of operation and maintenance
 - Regulatory compliance
 - At-line/on-line application
Instrument for Particle Size Analysis

- Emulsion Sizing
 - Horiba LA-950
 - Laser light scattering technique
 - Mie theory
 - 0.01 – 3000 micron
 - Good reproducibility
 - Fill, auto-alignment, blank, measurement, and rinse in less than 60 seconds
Microfluidics Study

- Chambers: G10Z and F20Y
- Pressures: 15 and 25 kpsig
- Passes: 1-5

Z-Type

Y-Type
Microfluidics - G10Z at 15 kpsig

<table>
<thead>
<tr>
<th></th>
<th>x50 (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse</td>
<td>8.23</td>
</tr>
<tr>
<td>Pass 1</td>
<td>0.36</td>
</tr>
<tr>
<td>Pass 2</td>
<td>0.27</td>
</tr>
<tr>
<td>Pass 3</td>
<td>0.27</td>
</tr>
<tr>
<td>Pass 4</td>
<td>0.27</td>
</tr>
<tr>
<td>Pass 5</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Diameter (µm)

- **Mean q(%)**
 - **Coarse**
 - **Pass 1**
 - **Pass 2**
 - **Pass 3**
 - **Pass 4**
 - **Pass 5**
Microfluidics - G10Z at 25 kpsig

<table>
<thead>
<tr>
<th>Diameter (µm)</th>
<th>x50 (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse</td>
<td>8.32</td>
</tr>
<tr>
<td>Pass 1</td>
<td>0.29</td>
</tr>
<tr>
<td>Pass 2</td>
<td>0.26</td>
</tr>
<tr>
<td>Pass 3</td>
<td>0.26</td>
</tr>
<tr>
<td>Pass 4</td>
<td>0.27</td>
</tr>
<tr>
<td>Pass 5</td>
<td>0.27</td>
</tr>
</tbody>
</table>

![Graph showing size distribution of passes and coarse emulsion](image-url)
Microfluidics - F20Y at 15 kpsig

<table>
<thead>
<tr>
<th>x50 (µm)</th>
<th>Coarse</th>
<th>Pass 1</th>
<th>Pass 2</th>
<th>Pass 3</th>
<th>Pass 4</th>
<th>Pass 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse</td>
<td>9.52</td>
<td>0.38</td>
<td>0.26</td>
<td>0.25</td>
<td>0.26</td>
<td>0.25</td>
</tr>
</tbody>
</table>

![Graph showing mean q% vs Diameter (µm)](image)
Microfluidics - F20Y at 25 kpsig

<table>
<thead>
<tr>
<th>x50 (µm)</th>
<th>Coarse</th>
<th>Pass 1</th>
<th>Pass 2</th>
<th>Pass 3</th>
<th>Pass 4</th>
<th>Pass 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse</td>
<td>10.04</td>
<td>0.28</td>
<td>0.28</td>
<td>0.27</td>
<td>0.27</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Mean q(%)
Microfluidics Study – Effects of Temperature Control

Temperature Control Zones
- Interaction Chamber
- Auxiliary Processing Module (APM)
- Cooling Jacket

Inlet Reservoir

Intensifier Pump

Pressure Gauge

Cooling Jacket

Outlet

APM

Interaction Chamber
Microfluidics Study – Effects of Temperature Control

<table>
<thead>
<tr>
<th></th>
<th>Interaction Chamber</th>
<th>APM</th>
<th>Cooling Jacket</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction Chamber</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>APM</td>
<td>++</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Cooling Jacket</td>
<td></td>
<td></td>
<td>++</td>
</tr>
</tbody>
</table>

Interaction Chamber + Exit Line + Cooling Jacket = ++

Note: The table and symbols indicate the level of interaction or control, with higher symbols representing greater interaction or control.
Microfluidics Study – Temperature Control of APM and Cooling Jacket

<table>
<thead>
<tr>
<th>Condition</th>
<th>Chamber</th>
<th>Pressure kpsig</th>
<th>Particle Size, Micron</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pass 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x10</td>
</tr>
<tr>
<td>1</td>
<td>G10Z</td>
<td>15</td>
<td>0.26</td>
</tr>
<tr>
<td>2</td>
<td>G10Z</td>
<td>20</td>
<td>0.21</td>
</tr>
<tr>
<td>3</td>
<td>G10Z</td>
<td>25</td>
<td>0.20</td>
</tr>
<tr>
<td>4</td>
<td>F12Y</td>
<td>15</td>
<td>0.22</td>
</tr>
<tr>
<td>5</td>
<td>F12Y</td>
<td>20</td>
<td>0.19</td>
</tr>
<tr>
<td>6</td>
<td>F12Y</td>
<td>25</td>
<td>0.19</td>
</tr>
</tbody>
</table>
Microfluidics – F12Y at 15 kpsi with Optimized Cooling

<table>
<thead>
<tr>
<th></th>
<th>x10</th>
<th>x50</th>
<th>x90</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Pass</td>
<td>0.22</td>
<td>0.31</td>
<td>0.44</td>
</tr>
<tr>
<td>2 Passes</td>
<td>0.19</td>
<td>0.26</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Mean, q%, Diameter, Microns

Two Passes
One Pass
Coarse Emulsion

Diameter, Microns
Microfluidics – F12Y at 25 kpsig with Optimized Cooling

<table>
<thead>
<tr>
<th></th>
<th>x10</th>
<th>x50</th>
<th>x90</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Pass</td>
<td>0.19</td>
<td>0.26</td>
<td>0.36</td>
</tr>
<tr>
<td>2 Passes</td>
<td>0.19</td>
<td>0.26</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Two Passes

One Pass

Coarse Emulsion

Diameter, Microns

Mean, q%
Emulsion Stability Studies

<table>
<thead>
<tr>
<th>Homogenizer</th>
<th>Sample</th>
<th>Time Point</th>
<th>x10</th>
<th>x50</th>
<th>x90</th>
<th>Mean</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avestin C-50</td>
<td>Homogenized Emulsion Pass #3</td>
<td>0</td>
<td>Ave</td>
<td>0.18</td>
<td>0.26</td>
<td>0.38</td>
<td>0.35</td>
</tr>
<tr>
<td>Avestin C-50</td>
<td>Homogenized Emulsion Pass #3</td>
<td>24hrs</td>
<td>Ave</td>
<td>0.19</td>
<td>0.28</td>
<td>0.41</td>
<td>0.35</td>
</tr>
<tr>
<td>Avestin C-50</td>
<td>Homogenized Emulsion Pass #3</td>
<td>96hrs</td>
<td>Ave</td>
<td>0.22</td>
<td>0.32</td>
<td>0.59</td>
<td>0.46</td>
</tr>
<tr>
<td>Microfluidics M-110EH</td>
<td>Homogenized Emulsion Pass #1</td>
<td>0</td>
<td>Ave</td>
<td>0.19</td>
<td>0.27</td>
<td>0.39</td>
<td>0.33</td>
</tr>
<tr>
<td>Microfluidics M-110EH</td>
<td>Homogenized Emulsion Pass #1</td>
<td>24hrs</td>
<td>Ave</td>
<td>0.20</td>
<td>0.29</td>
<td>0.42</td>
<td>0.34</td>
</tr>
<tr>
<td>Microfluidics M-110EH</td>
<td>Homogenized Emulsion Pass #1</td>
<td>96hrs</td>
<td>Ave</td>
<td>0.23</td>
<td>0.32</td>
<td>0.49</td>
<td>0.39</td>
</tr>
<tr>
<td>Microfluidics M-110EH</td>
<td>Homogenized Emulsion Pass #2</td>
<td>0</td>
<td>Ave</td>
<td>0.19</td>
<td>0.26</td>
<td>0.35</td>
<td>0.27</td>
</tr>
<tr>
<td>Microfluidics M-110EH</td>
<td>Homogenized Emulsion Pass #2</td>
<td>24hrs</td>
<td>Ave</td>
<td>0.18</td>
<td>0.25</td>
<td>0.35</td>
<td>0.26</td>
</tr>
<tr>
<td>Microfluidics M-110EH</td>
<td>Homogenized Emulsion Pass #2</td>
<td>96hrs</td>
<td>Ave</td>
<td>0.20</td>
<td>0.28</td>
<td>0.38</td>
<td>0.29</td>
</tr>
</tbody>
</table>
Emulsion Study Summary

- High precision and reproducible data from Horiba LA-950 particle size analyzer provide the critical information for evaluating different equipment and processing conditions.

- Both Y and Z types interaction chambers from Microfluidics produce emulsions with fine size and fairly uniform distribution. Y type is slightly more efficient than Z type.

- Cooling study using Microfluidics demonstrates that immediate quench of the processed emulsions is a critical process parameter to control the emulsions stability.

- When employing new cooling strategy, Microfluidics F12Y interaction chamber is able to produce fine and single-mode emulsions in less than two passes.
Acknowledgements

- Jeff Weer*
- Thomas Tarara*
- Jamshed Ghandhi
- Dan Miller
- Vidya Joshi
- Omar Ruiz
- Vinh Pham

Novartis Particle Engineering Technology

PulmoSphere

SEDS

PulmSol

Dropmeter