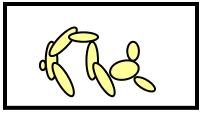


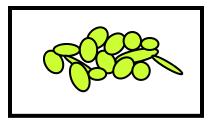
Dispersing Powders in Liquid

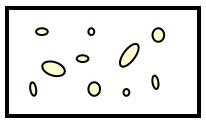
Mark Bumiller mark.bumiller@horiba.com

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific


HORIBA

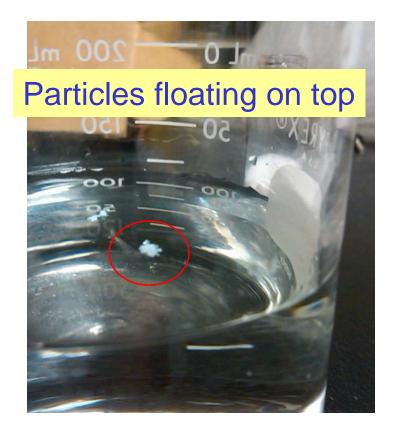

HORIBA

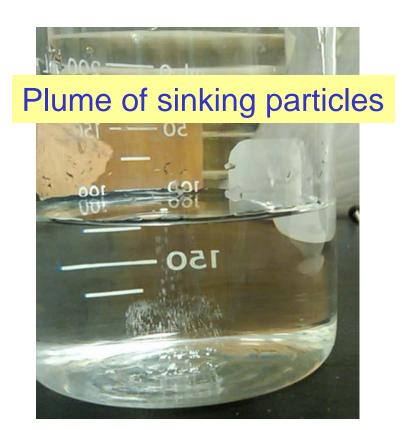

Definitions

- Typical powder: individual particles and "clumps" stuck together by weak or strong forces
- Agglomerates: assemblage of particles which are loosely coherent
- Aggregates: assemblage of particles rigidly joined together
- Well dispersed: individual particle state

Dispersion Strategies

Powders


- •When measuring powder as suspension
- Choose solvent (avoid dissolution)
- •Wet powder (surfactant)
- Dispersing aid to avoid re-agglomeration
- Energy to break agglomerates into primary particles
 - Pump & stirrer or ultrasound

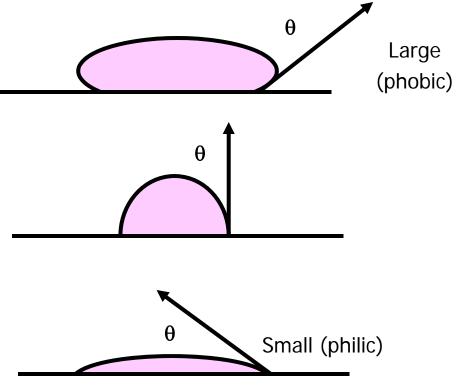


Check for Wetting

Sprinkle particles on of target dispersant. If the particles float on top and do not penetrate the water surface, they are not wetted. This is usually a bad sign.
If the particles break through surface and sink, they are a) wetted or b) so big that gravity is more important than surface tension. If it is case a, you are in luck.

Particle Wetting

Measurement of Contact Angle (θ)

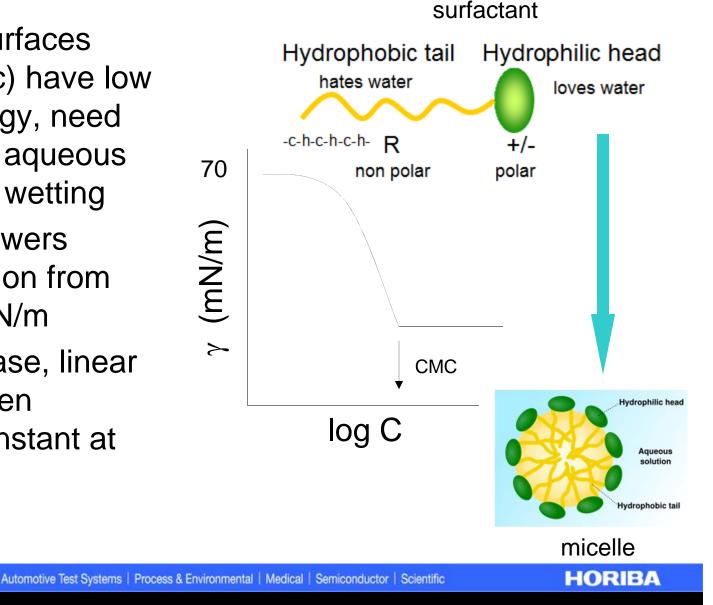

The contact angle is a measure of how well the liquid drop adheres to the surface of a solid

Large angles indicate poor wetting ability.

Small angles indicate good wetting ability.

Surfactants reduce surface tension and thereby are conducive to good wetting.

(Instruments are available for measuring contact angle)

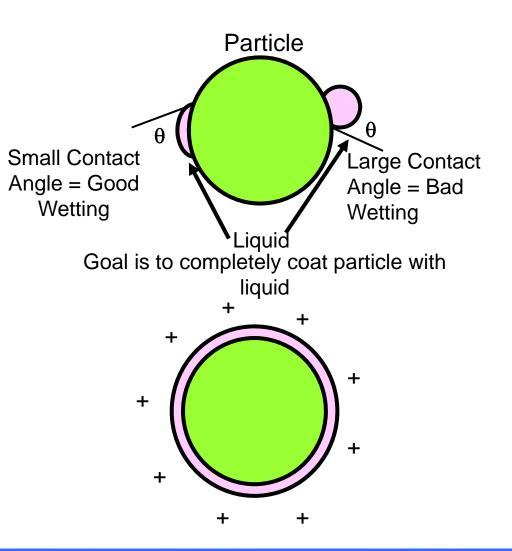


Drop of a liquid on a solid

HORIBA

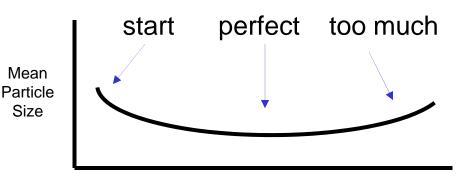
Surfactant Reduces Surface Tension

- Non-polar surfaces (hydrophobic) have low surface energy, need surfactant in aqueous phase to aid wetting
- Surfactant lowers surface tension from ~70 to 30 mN/m
- Slight decrease, linear decrease, then becomes constant at CMC



Explore the future

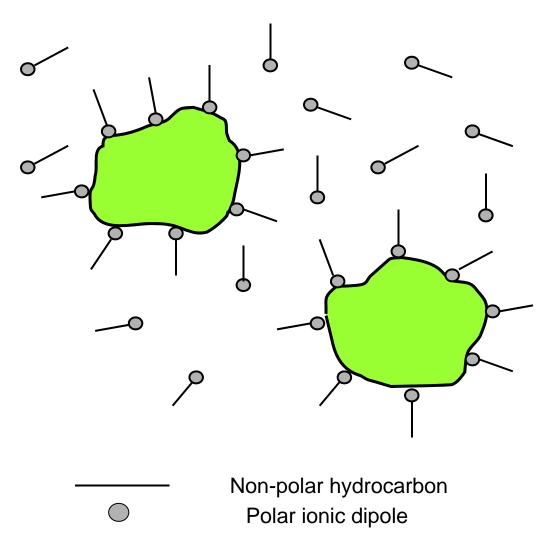
Particle Wetting


Surface tension must be lowered so liquid will adhere to particles.

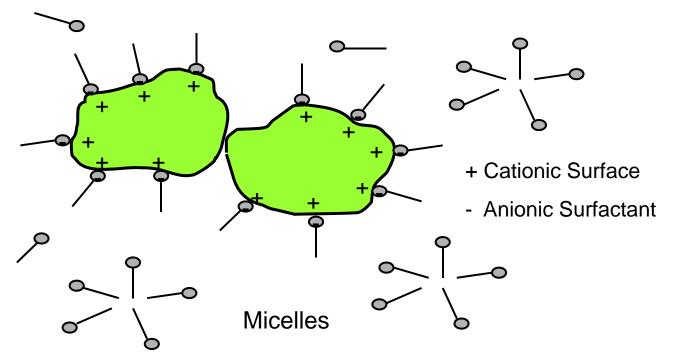
Explore the future

Effect of Surfactant Addition

- Surfactant addition will disperse particles for good measurement
- Particle size first decreases
- Reaches minimum @ proper concentration
- Add too much: particle size increases - agglomeration
- Common concentration: 0.01-0.1%

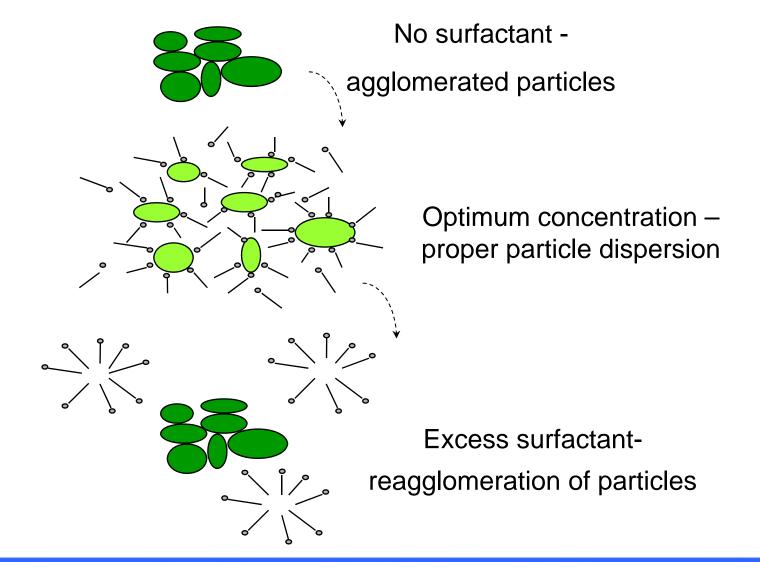


Surfactant Concentration


Surfactant Mechanism

Equilibrium established between surfactant on particles and surfactant in solution

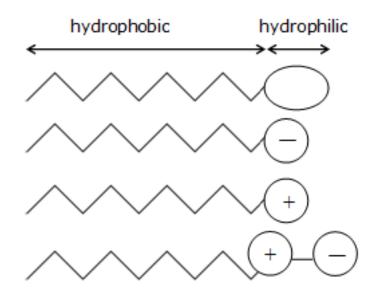
Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific


Critical Micelle Concentration

As more surfactant is added, equilibrium shifts. Surfactant leaves surfaces to start formation of micelles. This is called the Critical Micelle Concentration (CMC).

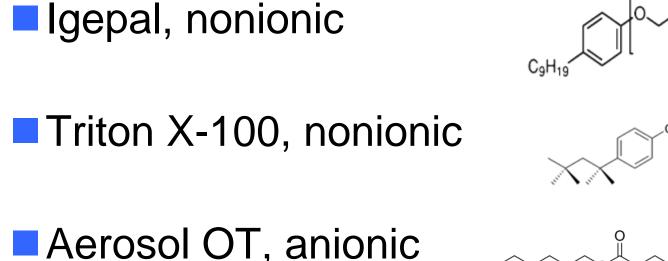
Particle surfaces are no longer repulsed, and energy of the system favors reagglomeration

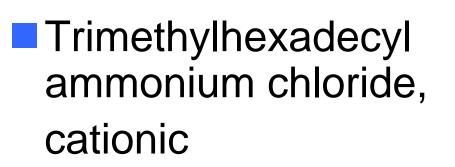
Effect of Surfactant Addition

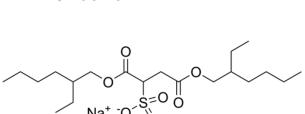


Types of Surfactants

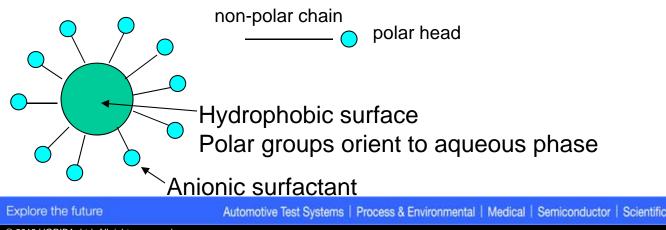
H-C chain is hydrophobic Polar head is hydrophilic


Nonionic
Anionic
Cationic
Zwitterionic





Types of Surfactants


OH

Common Surfactants

- Nonionic surfactants adsorb to charged and neutral surfaces, create steric barrier
- Igepal CA630 Ethoxylated octyl phenol Nonionic
- Triton X100 Octylphenoxypolyethoxy ethanol Nonionic
- Tween 20 Polyoxyethylene sorbitan Nonionic
- Aerosol-OT Dioctyl ester Na Sulfo succinic acid Anionic
- Cationic surfactants often used for biological samples, strongly bonds to negatively charged surfaces

Changing Solvents

- Working with aqueous systems is usually easier for many reasons.
- But don't forget to try a less polar solvent such as isopropyl alcohol.
- And, don't forget that organic solvents are more difficult to handle due to fire and health hazards.

Search for Answers

- Check the literature and the web and see what other people use.
- Google to get the idea to use MEK with lead.

Google	lead particle suspension
Ŭ	
Search	About 3,630,000 results (0.30 seconds)
Everything	Scholarly articles for lead particle suspension
Images	of peptides and proteins with particle suspension Schürenberg - Cited by 119 Biological defense mechanisms. The production by Babior - Cited by 2323
Maps	theory for a monodisperse gas-solid suspension - Koch - Cited by 128
	Por Dispersion-Flocculation Behavior of Fine Lead Particles in an Org
Videos	www.jim.or.jp/journal/e/pdf3/49/09/2119.pdf
News	File Format: PDF/Adobe Acrobat - Quick View
Shopping	by M Tsunekawa - 2008 - Cited by 2 - Related articles Load particles (0.01 g) were supponded in the MEK colu-tions (100 cm3) and filtrate
More	of lead particles suspension, where lead particles are suspended in MEK

Experiment

Try a series of options.

Here is a series of suspensions and check them by eye, then measure.

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

ISO 14887

- Provides rigorous approach to dispersion
- Need to understand powder properties and ionic strength in suspension
- Match powder to liquid to liquid, dispersant, and conditions

HORIBA

First edition 2000-09-01

Sample preparation — Dispersing procedures for powders in liquids

© 2013 HORIBA, Ltd. All rights reserved

14887 Categorize the Powder

- Does your powder best fit into the following categories
 - Metal
 - Metal oxide
 - Ionic salt
 - H-bonding organic
 - Non-polar organic
 - Weakly polar
 - Organic amine
 - Fluorocarbon

Category

metal hydroxide (pH_{iso} = 8,3) weakly polar metal oxide ionic salt ionic salt

Solid

boehmite boron carbide boron oxide cadmium sulfide calcium carbonate

Powders	
Category	Example
metal	aluminum
	aluminum
metal oxide	oxide
	calcium
ionic salt	carbonate
H-bonding	
organic	cellulose
organic acid	adipic acid
non-polar organic	latex
weakly polar	silicon carbide
organic amine	naphtylamine
fluorocarbon	perfluoroalkane

HORIBA

ISO 14887

Choose the Liquid

- Possible liquid categories include:
 - Water
 - Non-polar
 - Weakly polar
 - Highly polar
 - H-bonding organic

Liquids	
Category	Example
water	water
non-polar	iso-octane
weakly polar	methyl ethyl ketone
polar	cyclohaxanone
highly polar	acetone
H-bonding organic	ethylene glycol

ISO 14887

- Consider possible dispersants
 - Copolymer
 - Organic: acids, amines, esters, phosphate, sulfate, sulfonate
 - Phospholipid
 - Polyester
 - Polyionic salt

Dispersants (incomplete)		
Category	Example	
PEO/PPO		
copolymer	Pluronic	
organic acids	sodium dodecanoate	
organic amines	alkanolamide	
organic esters	lanolin	
organic phosphate	alcohol phosphate	
organic sulfate	sodium alkyl sulfate	
organic sulfonate	sodium alkyl sulfonate	
phospholipid	lecithin	
polyester	polyacrylate	
polyionic salt	sodium silicate	
PEO: Polyethoxy = (-CH2-CH2-O-)n		
PPO: Polyisopropoxy = (-CH2-CH(CH3)-O-)n		

*will discuss later

© 2013 HORIBA, Ltd. All rights reserved

Put it All Together

Solid category	Liquid category	Condition	Dispersing-agent category]
metal	water		PEO/mercaptan	1
		Encapsulation in ge	latine is also effective	1
	organic		organic amine]
carbon	water		PEO/alcohol	
	organic		PPO/alkane]
metal oxide	water	IS < 0,1	adjust pH < pH _{iso} – 2 or pH > pH _{iso} + 2	Avoic
		IS > 0,1	polyion	1
	organic		organic acid or organic amine	
metal hydroxide	Use the same guidelines as for a metal oxide		1	
ionic salt	water	IS < 0,1	try common-ion effect]
		IS > 0,1	polyion	
	H-bond organic		PEO/PPO copolymer	
	highly polar		PEO/PPO copolymer]
	weakly polar		PEO/alkane	
	nonpolar		PEO/alkane	1

Explore the future

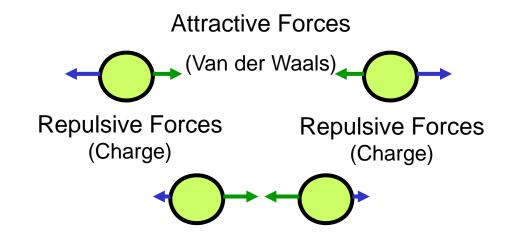
HORIBA

Put it All Together

HORIBA

HORIBA

Summary


Powder	Liquid	Dispersing agent
		PEO/PPO
H-bonding organic	water	copolymer
H-bonding organic	organic	phospholipid
		PEO/PPO
ionic salt	highly polar	copolymer
ionic salt	weakly polar	PEO/alkane
		adjust pH away
metal oxide	water	from IEP
metal oxide	organic	organic acid
		or organic amine

Personal experience: prefer electrostatic stabilization and avoid use of polymers

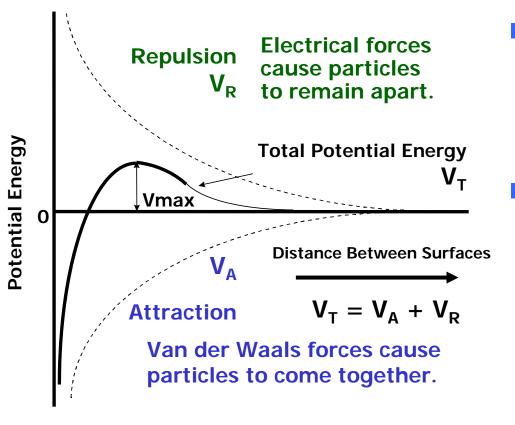
Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Dispersants: Particle Interactions

When particles approach close enough to cross the potential barrier (when attractive forces exceed repulsive forces), they come together (agglomerate).

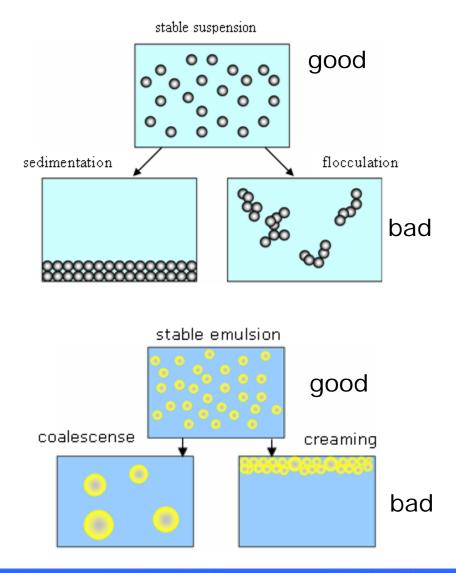
Goal: repulsive forces strong enough to keep particles apart, even during close approach. Can be accomplished by surfactant coating of particle surfaces.



Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Energy of Interaction

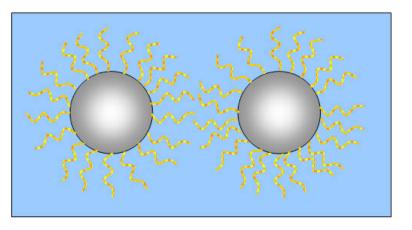
Interaction of Two Charges Surfaces/Particles



- Stability depends on balance of forces. Attractive due to Van der Waals, & repulsive due to electrical double layers around particles.
- If V_T lower than average thermal energy, K_T, then high probability two adjacent particles will eventually collide & remain attached due to strong Van der Waals forces at very close distances.

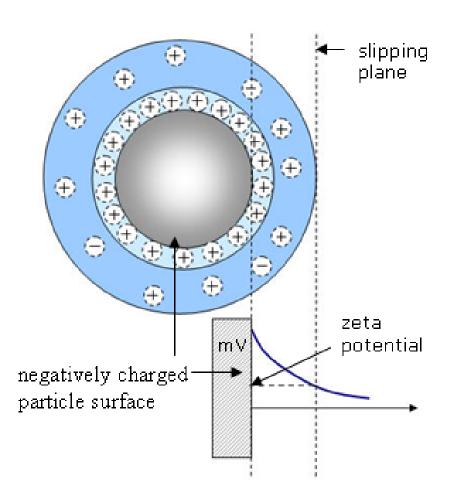
Dispersion Stability

- Want to disperse to individual particle state
- Need sample to stay dispersed during the measurement
- Avoid reagglomeration, sedimentation, flocculation



HORIBA

Dispersion Stability


- Electrostatic stabilization better when relative dielectric permittivity greater than 30, and ionic strength < 0.1 mol/L</p>
- Steric stabilization better when relative dielectric permittivity < 30 or an ionic strength greater than 0,1 mol/L

Zeta Potential

- If surface has + charge, then - ions attracted to surface
- + ions attracted to ions, builds electric double layer
- Slipping plane: distance from particle surface where ions move with particle
- ZP = potential (mV) at slipping plane

Dispersants

- Add charge to particle surface
- Need surfactants to wet
- Need energy to separate
- Need dispersants to keep apart

Poly	<i>i</i> or	nic	sa	lts
. 0.)	, 101		υu	

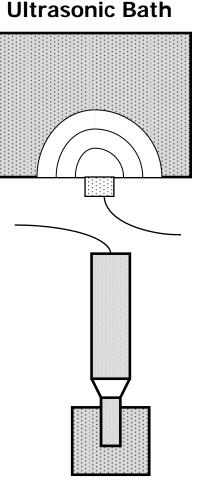
Dispersing agent	Commercial examples (manufacturer)	
sodium tripolyphosphate = Na ₃ PO ₄ · 12H ₂ O	Maypon (Stepan), SuperPro® (Stepan)	
sodium tetrapyrophosphate = Na ₄ P ₂ O ₇ · 10H ₂ O	Numerous	
sodium hexametaphosphate = Na ₆ (PO ₃) ₆	Calgon® (Nalco), (Solutia)	
sodium silicate	Numerous	
sodium citrate = $Na_3C_6H_5O_7 \cdot H_2O$	Numerous	
sodium polyacrylate	Dispex® 40 (Ciba Spec. Chem.), Good-rite® (BF Goodrich)	
NOTE Any alkali metal ion or amminium ion may be used in place of sodium.		

Dispersants

PEO/alcohol

Dispersing agent	Commercial examples (manufacturer)
alkyl phenoxy PEO ethanol	Igepal® (Rhodia), Lissapol® NX, Nonidet® P40 (BP), Praewozell® W-ON 100, Renex® 648, Triton® 100 (Union Carbide), Merpol® 100 (Rohm & Haas), Polyfac® NP-40 (Westvaco)
PEO/alkanol	Neodol® (Shell), Merpol® (Rohm & Haas), Tergitol® (Union Carbide)
PEO/acetylenic glycol	Surfynol® 104 (Air Products)

Water soluable organic


Dispersing agent	Commercial examples (manufacturer)
formaldehyde-naphthalene sulfonate	Daxad® (Grace), Blancol® N (Rhodia), Tamol® N Micro (Rohm & Haas), Petro 425 (Witco)
sulfonated lignin	Polyfon® (Westvaco), Marasperse® (Reed Lignin)
tannic acid	Durtan® (Durkee)
sorbitan laurate	Span® 20 (Uniqema), Liposorb® L (Lipo), Sorbac® 20 (Speciality Industrial Prod.)
PEO/sorbitan stearate	Tween
tall-oil acid salts	Polyfac® MT (Westvaco)

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Add Energy

- Ultrasonic waves generate microscopic bubbles or cavities (cavitation) which produce shearing action causing the liquid and suspended particles to become intensely agitated.
- Agglomerates are broken apart.
- In some cases fragile particles are shattered.
- The selection of appropriate type and level of ultrasonic energy must be made carefully.

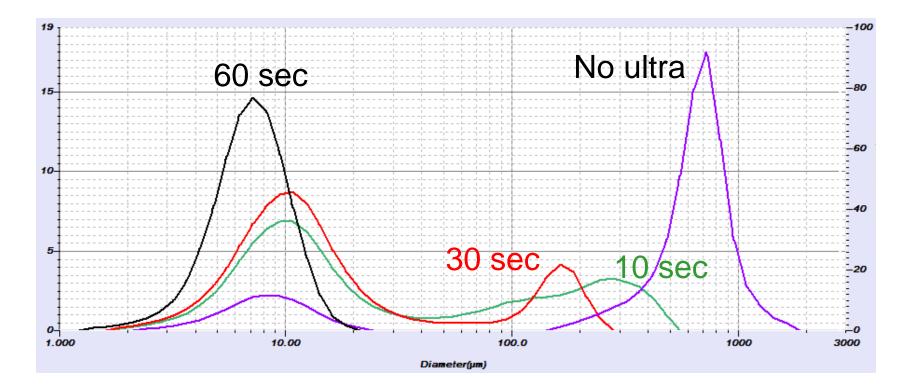
HORIBA

© 2013 HORIBA, Ltd. All rights reserved

Case Studies

Effect of Energy Effect of Dispersant

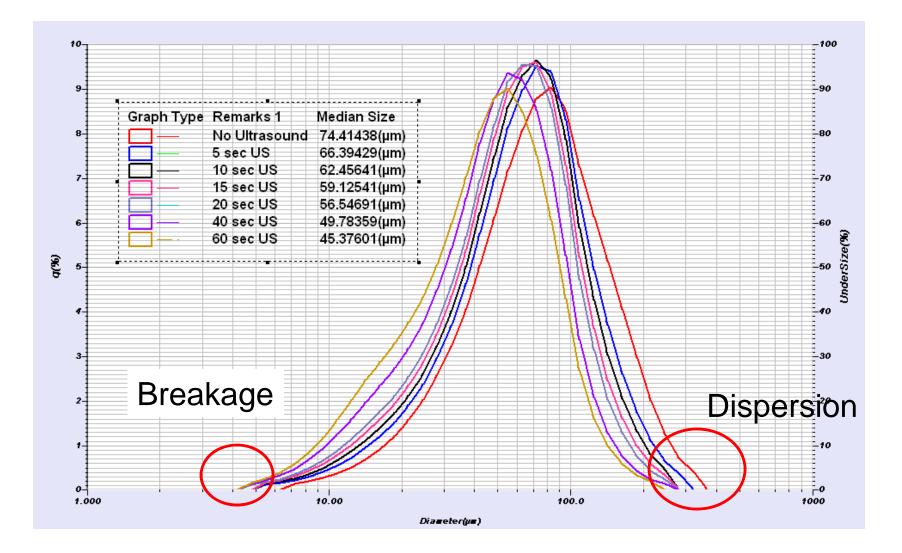
Explore the future


Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Add Energy

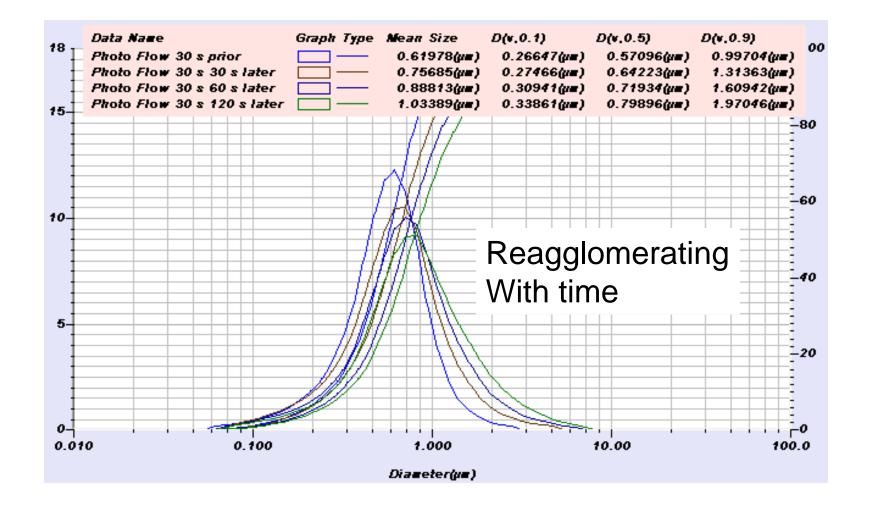
Effect of Ultrasound using LA-950


If powder naturally wets, energy best way to disperse powder

Explore the future

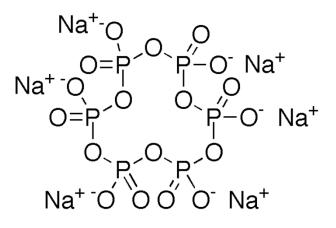
Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

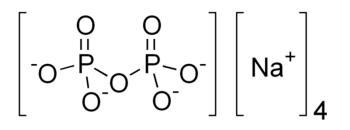
Effect of Ultrasound


Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

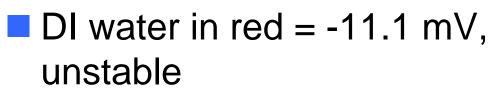

TiO2; no Dispersant



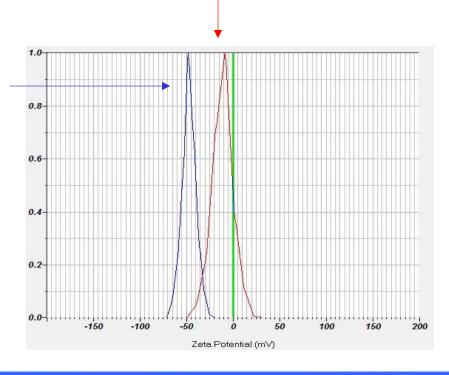
Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Sodium Hexametaphosphate

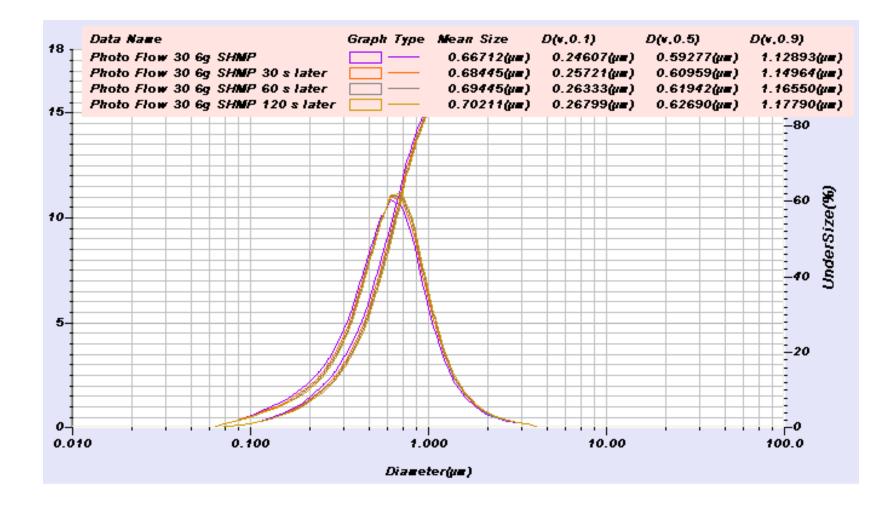
- Most common stabilizer
- Abbreviated NaHMP
- Keeps particles from reagglomerating
- Disperse sample in 0.01 1.0% (NaPO₃)₆ rather than DI water
- Tetrasodium pyrophosphate also used (sodium pyrophosphate, NaPP)



© 2013 HORIBA, Ltd. All rights reserved


Dispersant Increases ZP

Measured zeta potential on SZ-100 of sample in DI and in NaHMP


NaHMP in blue = -47.5 mV, stable

TiO2; with NaHMP

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Summary

- Surfactants wet powders
- Use dispersants/admixtures to alter surface chemistry
 - Sodium hexametaphosphate
 - Sodium pyrophosphate
- Ultrasound reduces size
 - De-agglomeration and/or breakage
- Need methodical approach, but now have a basis

Resources: www.horiba.com/particle

© 2013 HORIBA, Ltd. All rights reserved.

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific