
Surface Plasmon Resonance imaging (SPRi)
Cells and Bacteria
Articles

- Templier V. et al (2017) Biochips for direct detection and identification of bacteria in blood culture-like conditions, Sci Rep Aug 25; 7(1): 9457. DOI: 10.1038/s41598-017-10072-z.
- Melaine F. at al (2017) Selective and High Dynamic Range Assay Format for Multiplex Detection of Pathogenic Pseudomonas aeruginosa, Salmonella typhimurium, and Legionella pneumophila RNAs Using Surface Plasmon Resonance Imaging. Anal Chem. Jul 18; 89(14): 7802-7807. doi: 10.1021/acs.analchem.7b01942
- Berthuy O. at al (2016) Cancer-Cells on Chip for Label-Free Detection of Secreted Molecules, Biosensors, 6(1), 2. DOI : 10.3390/bios6010002
- Berthuy O. at al (2016) Organized Cell Adherent Array (OC2A) for Real-Time Multiplex Detection of Secreted Molecules, Int J Biosen Bioelectron 1(1): 00004. DOI: 10.15406/ijbsbe.2016.01.00004
- González-Arzola K. (2016) Histone chaperone activity of Arabidopsis thaliana NRP1 is blocked by cytochrome c, Nucleic Acids Research, Dec 6.DOI: 10.1093/nar/gkw1215
- Foudeh A. M. et al, Rapid and specific SPRi detection of L. pneumophila in complex environmental water samples, Anal. Bioanal. Chem., 407, 5541-5545. DOI: 10.1007/s00216-015-8726-y
- Yamasaki T. et al (2016) Development of a Surface Plasmon Resonance-based immunosensor for the detection of 10 majar O-antigens on Shiga toxin producing Escherichia Coli, with gel displacement technique to remove bound bacteria, Anal. Chem. 31May 2016. DOI: 10.1021/acs.analchem.6b00797
- Zghidi-Abouzid O. and al (2016), Regulation of pel genes, major virulence factors in the plant pathogen bacterium Dickeya dadantii, is mediated by cooperative binding of nucleoid-associated protein, Research in Microbiology, in press (available online 18 February 2016). DOI:10.1016/j.resmic.2016.02.001
- Charrière K. et al (2015) Biochip technology applied to an automated ABO compatibility test at the patient bedside, Sensors and Actuators B: Chemical, 208, 67-74
- Abadian P. N. and al (2015) Surface plasmon resonance imaging (SPRi) for multiplexed evaluation of bacterial adhesion onto surface coatings, Anal. Methods, 7, 115-122
DOI: 10.1039/C4AY02094D - Bulard E. (2015) Discrimination of different foodborne pathogens onto carbohydrate microarrays using surface plasmon resonance imaging. Proceedings of the International Conference on Biomedical Electronics and Devices (BIODEVICES-2015), 121-126.
- Huynh H.T.T. and al (2015) Surface plasmon resonance imaging of pathogens: the Yersinia pestis paradigm, BMC Res Notes, 8:259
DOI 10.1186/s13104-015-1236-3 - Bulard et al. (2015). Carbohydrates as new probes for the identification of closely related Escherichia coli strains using surface plasmon resonance imaging. Anal Chem, 87(3):1804-11. DOI: 10.1021/ac5037704.
- Foudeh AM and al (2014). Sub-femtomole detection of 16s rRNA from Legionella pneumophila using surface plasmon resonance imaging. Biosensors and Bioelectronics 52:129-135
- Charrière K. and al (2014). Biochip technology applied to an automated ABO compatibility test at the patient bedside. Sensors and Actuators B:Chemical 208:67-74
- Abadian, P.N. and al (2014). Using surface plasmon resonance imaging to study bacterial biofilms. Biomicrofluidics 8:021804
- Abadian, P.N. and al (2014). Cellular Analysis and Detection Using Surface Plasmon Resonance Techniques. Anal. Chem.86 (6):2799–2812
- Mondani L. and al (2014). Simultaneous enrichment and optical detection of low levels of stressed Escherichia coli O157:H7 in fodd matrices. J Appl Microbiol. 2014 Apr 16. DOI: 10.1111/jam.12522
- Leroy L. and al (2014). Photothermal effect for localized desorption of primary lymphocytes arrayed on an antibody/DNA-based biochip. Lab Chip, DOI: 10.1039/C4LC00336E
- Aninwene GE 2nd and al (2014). Lubricin: A novel means to decrease bacterial adhesion and proliferation. J Biomed Mater Res A. DOI: 10.1002/jbm.a.35195
- Bouguelia s. and al (2013). On-chip microbial culture for the specific detection of very low levels of bacteria. Lab chip, 13:4024-4032
- Milgran S. and al (2012). Antibody microarrays for label-free cell-based applications. Methods (56), 326:333
- Bombera and al. (2012). DNA-directed capture of primary cells from a complex mixture and controlled orthogonal release monitored by SPR imaging. Biosensors and Bioelectronics, 33(1):10-6.
- Villiers and al. (2011). Peptide-protein microarrays and surface plasmon resonance detection: biosensors for versatile biomolecular interaction analysis. Biosensors and Bioelectronics. 26(4):1554-1559
- Cortes and al. (2011) Biosensor for direct cell detection, quantification and analysis.. Biosensors and Bioelectronics. 26(10): 4162-4168
- Milgram and al. (2010). On chip real time monitoring of B-cells hybridoma secretion of immunoglobulin. Biosensors and Bioelectronics. 26(5):2728-2732
- Milgram and al. (2009). Real time and label-free analysis of cellular activity on chip. Sensors, 2009 IEEE – IEEE SENSORS 2009 Conference.
- Roupioz and al. (2009) Individual blood-cell capture and 2D organization on microarrays. Small. 5(13): 1493-1497.
- Ruiz and al. (2008) Micro-stamped surfaces for the patterned growth of neural stem cells. Biomaterials. 29: 4766-4774.
- Suraniti and al. (2007) Real-time detection of lymphocytes binding on an antibody chip using SPR imaging. Lab Chip. 7: 1206-1208.

Benutzer Anmeldung
Geben Sie Ihren Benutzernamen und Ihr Passwort ein, um sich an der Webseite anzumelden:
Forgot Password?
Having trouble login in? Please click here and we will send a new password. If you are still having trouble, contact us at web_member@horiba.com.
Not a member yet?
Register and receive access to advanced information, including Application Data Sheets, Application Notes, Brochures, Links to External Articles, Manuals, Software Downloads, Software Updates. When you register you will also receive periodic updates by e-mail. Create a new account.
