Back to Particle Characterization Products Overview
Back to Particle Applications

Ceramics

Ceramic Applications

Products used in ceramic and abrasive applications are invariably produced from powders. Particle size distribution has profound effects on processing and function of these products. These materials include most oxides and minerals from aluminum oxide to zirconium oxide. Depending on the application, particle size can effect densification, transport and mechanical properties. The range of particle sizes is broad, from less than 100 nm to greater than 100 µm. Laser diffraction, dynamic light scattering and acoustic spectroscopy have all been successfully utilized to characterize ceramic materials.

Electronic Ceramics

Particle size analysis plays a crucial role in the manufacture of electronic materials for dielectric applications. These materials include single-phase powders such as barium titanate as well as formulations that contain many different oxide phases. In all cases, the particle size distribution has a great impact on their processing and performance.

Fuel Cells

Solid oxide fuel cells (SOFC’s) offer the potential to greatly reduce man’s dependence on coal and oil for the production of electricity. They are clean, quiet and efficient. At the heart of these devices lies a complex combination of polycrystalline ceramic materials, each having to meet a particular set of structural and electrochemical requirements. Engineers control the performance of each component through manipulation of chemical and physical properties of the starting powders. Particle size is of critical importance to the powder properties and to the performance of the cells. Laser diffraction particle size analysis has proven to be an excellent way to monitor and control particle size for these materials during powder synthesis and component fabrication.

Choosing the Refractive Index for Powder Mixtures

The most accurate results obtained from laser diffraction requires some knowledge of the refractive index of the sample. This can be challenging when the sample contains a mixture of powders, as is often the case with ceramic materials. This application note describes several approaches for choosing the refractive index for powder mixtures including a case study for a ZrO2-Y2O3-Al3O3 mixture.

Aluminum Oxide

Alumina (aluminum oxide, Al2O3) has widespread use in the ceramics industry for refractory materials, abrasives, and porcelain. Many different sizes and chemically modified grades are available. Particle size affects the manufacturing and mechanical properties of these components, including packing density and mechanical strength of the final part. These materials are usually dispersed in water for measurement, with surfactant added to prevent agglomeration.

 

Iron Oxide

Synthetic iron oxide powders are used primarily for their pigmentary and magnetic properties (although not all types of iron oxide are magnetic). The category of iron oxide powders includes all types of synthetic iron oxides (hematite, magnetite, maghemite, etc.) and ferrite powders also, as the latter materials have as their main constituent ferric oxide (Fe2O3). Iron oxide powders are the most widely used of all colored inorganic pigments, used in concrete products, paints, plastics, and other media. Due to their chemical and magnetic properties, iron oxide powders also find significant commercial usage in electromagnetic components, catalysts, toners, magnetic recording media, and other applications.

Related Notes

Solid Oxide Fuel Cell Materials
DescriptionSolid oxide fuel cells (SOFC’s) offer the potential to greatly reduce man’s dependence on coal and oil for the production of electricity. They are clean, quiet and efficient. At the heart of these devices lies a complex combination of polycrystalline ceramic materials, each having to meet a particular set of structural and electrochemical requirements. Engineers control the performance of each component through manipulation of chemical and physical properties of the starting powders.
Size 1.24 MB
FiletypePDF
Electronic Ceramics
DescriptionParticle size analysis plays a crucial role in the manufacture of electronic materials for dielectric applications. These materials include single-phase powders such as barium titanate as well as formulations that contain many different oxide phases. In all cases, the particle size distribution has a great impact on their processing and performance.
Size 1.01 MB
FiletypePDF
Piezoelectric Ceramics
DescriptionThe particle size of piezoelectric ceramics plays a crucial role in calcination and sintering temperature, which affects the processing time, and, subsequently, the performance of the final pressed component. It is for this reason that particle size analysis is used at different stages of the manufacturing process; beginning with the raw materials through the final stage of the creation of a spray-dried powder. The LA-960 is ideally suited for tracking this synthesis.
Size 0.79 MB
FiletypePDF
Particle Size Analysis of Alumina
DescriptionAlumina has widespread use in the ceramics industry for refractory materials, abrasives, and porcelain. Many different sizes and chemically modified grades are available. Particle size affects the manufacturing and mechanical properties of these components, including packing density and mechanical strength of the final part. These materials are usually dispersed in water for measurement, with surfactant added to prevent agglomeration.
Size 0.07 MB
FiletypePDF

Browse Products

Partica LA-960
MorePartica LA-960
Laser Scattering Particle Size Distribution Analyzer
CAMSIZER P4*
MoreCAMSIZER P4*
Dynamic Image Analysis System Particle Size
CAMSIZER X2*
MoreCAMSIZER X2*
Dynamic Image Analysis System Particle Size
Partica mini LA-350
MorePartica mini LA-350
Laser Scattering Particle Size Distribution Analyzer
PSA300
MorePSA300
Static Image Analysis System Particle Size
SA-9600 Series
MoreSA-9600 Series
BET Flowing Gas Surface Area Analyzers
SZ-100
MoreSZ-100
Nanopartica Series Instruments
ViewSizer 3000
MoreViewSizer 3000
The Better Way to Characterize Nanoparticles

REQUEST FOR INFORMATION

Do you have any questions or requests? Use this form to contact our specialists.