HORIBA
  • Products
    • By Segment
      • Automotive
      • Medical
      • Process and Environmental
      • Semiconductor
      • Scientific
    • All Products (A-Z)
    • By Industry
      • Arts, Entertainment and Recreation
        • Art Conservation
        • Museums, Historical Sites and Similar Institutions
      • Education, R&D and Government Institutions
        • Universities
        • Research and Testing Laboratories
      • Energy and Environment
        • Battery
        • Coal and Consumable Fuels
        • Electric Utilities
        • Energy Fuel Oil
        • Environmental Countermeasures
        • Oil and Gas
        • Petroleum and Coal Products Manufacturing
      • Food and Beverage
        • Beverages
        • Food
        • Cosmetics
      • Health Care
        • Biotechnology
        • HORIBA In Vitro Diagnostic solutions for human health care
        • Life Sciences
        • Pharmaceuticals and Medicine Manufacturing
      • Industrials
        • Building Products
        • Commercial and Professional Services
        • Electrical Equipment
        • Machinery
      • Information Technology
        • Semiconductor Manufacturing Process
      • Materials
        • Chemicals
        • Chemical Manufacturing
        • Containers and Packaging
        • Nonferrous Metals
        • Nonmetallic Minerals
        • Paper, Forest Products and Manufacturing
        • Plastics and Rubber
        • Primary Metals
      • Mobility and Transportation
        • Automobiles and Components
        • Automotive Manufacturing
        • Other Transportation Equipment Manufacturing
      • Waste Management
        • Solid Waste Management and Remediation Services
        • Water Waste Management and Remediation Services
      • Water
        • Desalination
        • Drinking Water Utilities
        • High Purity Water
        • Other Industry Water
        • Water Reuse
    • By Technique
      • Atomic Spectroscopy
        • Energy Dispersive X-ray Fluorescence (ED-XRF)
        • Glow Discharge Optical Emission Spectrometry (GD-OES)
        • Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES)
        • Inorganic Elemental Analysis
        • Beta-ray Absorption Analyzer
      • Electrochemistry
        • Potentiometry based on Ion-Selective Electrode (ISE)
      • Life Science Techniques
        • Label-free Detection / Surface Plasmon Resonance Imaging (SPRi)
      • Mass Spectrometry
        • Plasma Profiling Time-Of-Flight Mass Spectrometry (PP-TOFMS)
        • Quadrupole Mass Spectrometry
      • Material Characterization
        • Colorimetry
        • Condensation Particle Counter (CPC)
        • Dynamic Light Scattering (DLS) Particle Size Distribution Analysis
        • Magneto-pneumatic Analysis
        • Mechanical Flowmetry
        • Pressure-based Mass Flowmetry
        • Spectroscopic Ellipsometry
        • Static Light Scattering (SLS) / Laser Diffraction Particle Size Distribution Analysis
        • Fluid Measurement and Control
      • Molecular Spectroscopy
        • Absorption and Transmission Spectroscopy (UV, Visible, NIR)
        • Cathodoluminescence (CL, CLUE)
        • Chemiluminescence
        • Fluorescence Spectroscopy
        • Fourier-Transform Infrared Spectroscopy (FTIR)
        • Non-Dispersive Infrared Spectroscopy (NDIR)
        • Non-Dispersive Ultra Violet Spectroscopy (NDUV)
        • Photoluminescence (PL) & Electroluminescence (EL)
        • Quantum Cascade Laser (QCL) Spectroscopy
        • Raman Imaging and Spectroscopy
        • Vacuum Ultra Violet Spectroscopy
      • Radioactivity
        • Crystal Scintillation
      • Surface Science Techniques
        • Plasma Profiling Time-Of-Flight Mass Spectrometry (PP-TOFMS)
        • AFM-Raman (co-localized measurements & TERS)
  • Applications
    • Arts, Entertainment and Recreation
      • Art Conservation
      • Museums, Historical Sites and Similar Institutions
    • Education, R&D and Government Institutions
      • Universities
      • Research and Testing Laboratories
    • Energy and Environment
      • Coal and Consumable Fuels
      • Electric Utilities
      • Energy Fuel Oil
        • Wear metals and additive Elements Analysis.
      • Environmental Countermeasures
      • Petroleum and Coal Products Manufacturing
        • Petrochemicals
      • Photovoltaics
      • Oil and Gas
      • RoHS and ELV
    • Food and Beverage
      • Agriculture & Crop Science
      • Research & Development
      • Beverages
      • Food
      • Food & Beverage Manufacturing
    • Health Care
      • Biochemistry
      • Biotechnology
        • High Throughput Screening of Affimer Proteins using SPRi Label-Free Technology
        • Analytical Chemistry
      • Human Health Care
      • Life Sciences
        • Cell Biology
        • Blood Testing
        • Proteomics
        • Microbiology
        • Structural Biology
        • Genomics
        • Bioengineering
        • Nanoscience
        • Personal Care
      • Pharmaceuticals and Medicine Manufacturing
        • Cosmetics
        • Drug Discovery and Development
        • Drug Delivery
        • Counterfeit
        • Quality Assurance
        • Vacuum Monitoring in Dryer Equipment for Freeze Dry in Pharmaceuticals and Medicine Manufacturing
        • Bioprocessing
        • Analytical Chemistry
    • Industrials
      • Battery
      • Commercial and Professional Services
        • Gas mass flow control and measurement for reference value of PM2.5 measurement
      • Construction & Engineering
      • Electrical Equipment
      • Machinery
    • Information Technology
      • Semiconductors
        • 2D Materials
        • Graphene
        • Photovoltaics
        • Determination of Perovskite Optical Constants
        • Display Technologies
        • Data Storage
        • Nanomaterials
      • Semiconductor Manufacturing Process
      • Technology Hardware and Equipment
    • Materials
      • Ceramics
      • Chemicals
        • Fertilizers, phyo-sanitary
        • Polymers & Plastics
        • Analytical Chemistry
      • Chemical Manufacturing
      • Construction Materials
      • Containers and Packaging
        • Quality control in the aluminium packaging industry
      • Metal Powder
      • Nonferrous Metals
      • Nonmetallic Minerals
        • Glass
        • Coatings
      • Paper, Forest Products and Manufacturing
      • Plastics and Rubber
      • Primary Metals
      • Material Research
        • Corrosion
        • 2D Materials
        • Quantum Dots
        • Carbon based Materials - Graphene
        • Nanomaterials
      • Photovoltaics
      • Forensics
      • Metal and Mining
        • Gemstones
    • Mobility and Transportation
      • Automotive Manufacturing
      • Engine, Turbine and Power Transmission Equipment Manufacturing
      • Real Driving Emissions
      • RDE Plus
    • Waste Management
      • Solid Waste Management and Remediation Services
      • Water Waste Management and Remediation Services
        • Repeatability of Traces and Major Elements in Water
        • Very Rapid Analysis of Supply Water, Sludge From Purification Station and Animal Food
        • Waste Water and Soil Analysis
        • Waste Water Treatment and Disposal
    • Water
      • Drinking Water Utilities
      • Water Reuse
        • Water Testing
      • General Water Measurement
  • Technology
    • Measurement and Control Techniques
      • Electrochemistry
        • The Story of pH
        • The Basis of pH
        • Measurement of pH
        • The Story of Ion
        • The Basis of Ion
        • Measurement of Ion
        • The Story of ORP
        • The Basis of ORP
        • Measurement of ORP
        • The Story of Conductivity
        • The Basis of Conductivity
        • Measurement of Conductivity
        • The Story of Salt
        • The Story of Dissolved Oxygen
        • The Basis of DO Measurement
        • LAQUA Electrode Technology
      • Elemental Analysis
        • X-ray Fluorescence Spectroscopy (XRF)
        • Glow Discharge Optical Emission Spectroscopy
        • Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES)
        • Carbon/Sulfur & Oxygen/Nitrogen/Hydrogen Analysis
      • Health Care
        • Multi Distribution Sampling System (MDSS)
        • Reticulocytes Analysis
        • CBC + CRP
        • Slide Production
        • Automatic Rerun
        • Absorbance
        • Fluorescence
        • Flow cytometry
        • Impedance / Resistivity
        • Sedimentation
        • Spectrophotometry
        • Potentiometry
        • INR screening
        • Clotting
        • Turbidimetric
        • Chromogenic
      • Light Scattering
        • Dynamic Light Scattering (DLS) Particle Size Distribution Analysis
        • Molecular Weight
        • Raman Scattering
        • Static Light Scattering (SLS) / Laser Diffraction Particle Size Distribution Analysis
        • Zeta Potential
      • Fluid Control
        • Thermal Mass Flowmetry
      • Mass Spectrometry
        • Quadrupole Mass Spectrometry
      • Microscopy and Imaging
        • AFM-Raman
        • Atomic Force Microscopy [AFM]
        • Cathodoluminescence
        • Image Analysis of Particles
        • Micro-X-ray Fluorescence
      • Physisorption
        • Surface Area
      • Spectroscopy
        • Cathodoluminescence Spectroscopy
        • AFM-Raman
        • Detectors
        • 50 years of Diffraction Gratings
        • Diffraction Gratings Ruled and Holographic
        • Fluorescence Spectroscopy
        • Raman Spectroscopy
        • Spectrometers, Monochromators and Spectrographs
        • Spectroscopic Ellipsometry
        • Vacuum Ultra Violet Spectroscopy
        • X-ray Fluorescence
      • Surface Plasmon Resonance
        • Surface Plasmon Resonance Imaging (SPRi)
  • Service
    • Analysis Services
      • Analysis Centers and Services
      • EMC Analysis Service
    • Calibration and Certification
      • Calibration Centers
    • Customer Support
      • HORIBA Medical Documentation Database
      • Medical Customer Support
      • On-Site Support
      • Software Upgrades
      • STARS Helpdesk
    • Maintenance
      • Dynamometer and Other Overhaul Services
      • Periodic Maintenance
    • Spare Parts and Consumables
    • Testing and Consulting
      • Testing Centers
    • Training
      • Product Training
        • Scientific Product Training
        • Automotive Product Training
        • Medical Product Training
      • Technology Training
        • Raman Training
        • Glow Discharge Training
        • Fluorescence Training
        • Ellipsometry Training
        • SPRi Training
        • Inductively Coupled Plasma Training
        • Inductively Coupled Plasma Training (USA)
        • PSA Training
        • Carbon, Sulfur, Oxygen, Nitrogen and Hydrogen Analyzers Training (USA)
        • Online-OnSite Training
  • Company
    • About HORIBA
      • Message
      • Company Profile
        • Board of Directors
        • Corporate Officers
      • Culture
        • Corporate Philosophy
      • History
        • 1945–1960s
        • 1970s
        • 1980s
        • 1990s
        • 2000s
        • 2010s
      • Technical Journal "Readout"
        • Masao Horiba Awards Research Articles
        • Readout No. E54 - Microplastics and Nanoplastics: Analysis and Method Development
        • Readout No. E53 - 2019 Masao Horiba Awards - Advanced Analytical and Measurement Technologies for Efficient Control System to Maximize the Performance of Electric Power and Batteries Usage
        • Readout No. E52 - Green Innovation for Marine Shipping Industry
        • Readout No. E51 - 2018 Masao Horiba Awards Advanced analytical and measurement technologies in semiconductor manufacturing processes
        • Readout No. E50 - Low-Carbon Society and Environmental Improvement
        • Readout No. E49 - Photonic Instrumentation in Life Science
        • Readout No. E48 - Water Measurement Experts
        • Readout No. E47 - Application for Semiconductor Manufacturing Process
        • Readout No. E46 - New Development for Automotive Test Systems
        • Readout No. E45 - Application Technology in Analysis
        • Readout No. E44 - Contribution of Diagnostics to Total Medical Care/Healthcare
        • Readout No. E43 - Watching the Environmental and Society with Measurements
        • Readout No. E42 - More Efficient Testing on Automotive Development, Improving the Accuracy of Fuel Consumption Measurement
        • Readout No. E41 - Application
        • Readout No. E40 - Application
        • Readout No. E18 - EUROPE
        • Readout No. E17 - AMERICA
        • Readout No. E16 - Chinese (Asia)
        • Readout No. E15 - Technologies for HORIBA STEC
        • Readout No. E14 - Masao HORIBA Awards"Measurement of Bioparticles" and "Measurement of Internal Combustion"
        • Readout No. E13 - Technologies for Automotive Testing
        • Readout No. E12 - Masao Horiba Awards "X-ray Analysis Technology"
        • Readout No. E11 - The Second Masao Horiba Awards
        • Readout No. E10 - Environmental Analysis Technologies for the Management of Global Environment and the Development of Industry
        • Readout No. E09 - The First Dr.Masao Horiba's Award and the 50th Anniversary Products
        • Readout No. E08 - Products and Technologies of HORIBA ABX
        • Readout No. E07 - Products and Technologies of Jobin Yvon HORIBA Group
        • Readout No. E06 - 50th Anniversary of HORIBA, Ltd. Products and Technology of HORIBA Group
        • Readout No. E05 - Semiconductor Instruments
        • Readout No. E04 - Hematology Instruments
        • Readout No. E03 - Paticulate Matter
        • Readout No. E02 - The Technolgy Alliance for X-ray Analysis
        • Readout No. E01 - the Analysis of the Global Environment
      • Virtual Patent Marking
    • Events
    • Career
    • Investor Relations
      • Home
      • Investor Relations News
      • Management Policies
        • Message from the CEO
        • Mid-Long Term Management Plan
        • Corporate Governance
        • Corporate Culture "Joy and Fun"
        • Corporate Philosophy
      • IR Library
        • Financial Statements
        • Presentation Materials
        • HORIBA Report
        • Financial Information
      • Stock Information
        • Basic Stock Information
      • Investor Relations Contact
      • Other IR Information
        • Investor Relations Calendar
        • Disclaimer
    • News
    • Social Responsibility
      • Home
      • Message
      • HORIBA's CSR
        • CSR Policy, CSR Promotion System
        • UN Global Compact
        • HORIBA and the SDGs
      • Environment
        • Policy
        • Environmental Activities
        • Eco-Friendly Products
        • Actions for RoHS Directive, REACH Regulation and GHS Regulations
      • Social
        • Home
        • Integrated Management System
        • Quality
        • Occupational safety and health
        • Promotion of Diversity
        • Material Procurement
        • Social Activities
      • Governance
        • Corporate Governance
        • Code of Ethics
        • Internal Controls
        • Compliance Promotion Systems
        • Risk Management
      • HORIBA Special Contents
      • Library
      • HORIBA Group Social Media
        • Social Media Registered Accounts
        • HORIBA Group Social Media Policy
        • HORIBA Group Terms of Use for Social Media
      • Integrated Report
    • Group Companies
      • Americas
        • Brazil
        • Canada
        • United States
      • Asia
        • China
        • India
        • Indonesia
        • Japan
        • Korea
        • Philippines
        • Singapore
        • Taiwan
        • Thailand
        • Vietnam
      • Europe
        • Austria
        • Belgium
        • Czech Republic
        • France
        • Germany
        • Italy
        • Netherlands
        • Poland
        • Portugal
        • Romania
        • Russia
        • Spain
        • Sweden
        • Turkey
        • United Kingdom
  • Contact
    • Contact Form
    • Worldwide Locations

Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES) open open
  • Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES)
  • Scientific ICP Spectrometers
  • Applications for ICP-OES
  • ICP-OES and other techniques
  • Principles and Theory
  • Instrumentation
  • Excitation Source
  • Dispersive System
  • Detection Systems Used with ICP-OES
  • Performances in ICP-OES
  • HORIBA
    • Products
    • Applications
    • Technology
    • Service
    • Company
    • Contact
    Technology
    • Measurement and Control Techniques
    Measurement and Control Techniques
    • Electrochemistry
    • Elemental Analysis
    • Health Care
    • Light Scattering
    • Fluid Control
    • Mass Spectrometry
    • Microscopy and Imaging
    • Physisorption
    • Spectroscopy
    • Surface Plasmon Resonance
    Elemental Analysis
    • Carbon/Sulfur & Oxygen/Nitrogen/Hydrogen Analysis
    Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES)
    • Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES)
    • The HORIBA Scientific ICP Spectrometers
    • The most common domains of applications for ICP-OES
    • Difference between ICP-OES and other techniques
    • Principles and Theory
    • Instrumentation
    • Excitation Source
    • Dispersive System
    • Detection Systems Used with ICP-OES
    • Performances in ICP-OES
    Dispersive System

Dispersive System

Definition of the dispersive system

The dispersive system collects light emitted from the plasma and separates the various wavelengths so they can be measured for qualitative and quantitative analysis. Collection of light should be done with the highest efficiency to ensure sensitivity of measurements. The system should allow measurement in the 160-800 nm range, and down to 120 nm for some specific applications.

Typical types of dispersive systems for ICP-OES

Typical types of dispersive systems for ICP-OES: Czemy-Turner dispersive system.

Fig. 25: Czemy-Turner dispersive system.

Several dispersive systems can be used in ICP-OES: Czerny- Turner, Paschen-Runge, and Echelle optics can be found.

Czerny-Turner In this optical mounting, the dispersive system is made of two collimating mirrors and one grating (or dual grating systems mounted on a turret). The light collected from the plasma through the lens of the entrance collimating system is reflected by the entrance mirror and wavelengths are separated using the grating (usually a high density grating is used, typically 2400 to 4320 gr/mm). The second mirror focuses the light on the detector. Optical components are reduced to the minimum to improve light transmission efficiency. Czerny-Turner optics provides constant resolution over the measured spectrum.

The rotation of the grating allows coverage of the whole spectral range and ensures full wavelength coverage, i.e. all wavelengths can be accessed and measured. The movement of the grating can be done using a sine bar or a direct drive system that leads to higher speed of movement and better repeatability for the positioning.

 

Typical types of dispersive systems for ICP-OES: Paschen-Runge dispersive system.

Fig. 26: Paschen-Runge dispersive system.

Paschen-Runge optics uses a concave grating to separate wavelengths. The grating is also used as the collimating system. High density gratings are used, typically 2400 to 4343 g/mm. Light is collected from the plasma using a lens, and is dispersed using the grating that is in a fixed position. Dispersed light is focused on a circle, the Rowland circle, where all detectors are placed. Many detectors should be used to measure signals. Paschen-Runge optics provides constant resolution over the measured spectrum but does not allow full wavelength coverage due to the relative positions of the entrance slit and of the diffracted light.

Echelle optics uses an Echelle grating that is a low density grating, typically in the 50-100 gr/mm range. A system is required before or after the grating to separate the different orders that are overlapping. This order dispersion can be done using a prism or more specific dispersers. Optical components may be fixed or moving according to the design of the instrument. Light is dispersed in a two-dimensional figure called Echellogram and detection should then be done on this 2-dimension figure.

Influence of the groove density of the grating

Theoretical resolution as a function of the grating groove density and the order of measurement.

Table 1: Theoretical resolution as a function of the grating groove density and the order of measurement.

The better the groove density is, the better the resolution is. The resolution is the ability of the dispersive system to separate two narrow peaks. It is usually expressed as the full width at half maximum of the peak. High resolution helps achieve high performance for matrices containing many elements or elements emitting many lines across the spectrum.

Practical limitation of the wavelength coverage as a function of the grating groove density and the order of measurement.

Table 2: Practical limitation of the wavelength coverage as a function of the grating groove density and the order of measurement.

The groove density also defines the wavelength range that can be accessed. The more the density is important, the less the wavelength range is large.

Use of different gratings orders for measurements

When a grating diffracts light, it follows a simple rule that is: sinα+sinβ=k.n.λ with α the incident angle, β the refracting angle, k the order, n the groove density and λ the wavelength.

For a given grating (n fixed), a given position of the grating (α and β fixed), several wavelengths λ can be observed: λ in the 1st order, λ/2 in the 2nd order, λ/3 in the 3rd order…

To avoid any issue, order filters are used in spectrometers. For a given wavelength (λ fixed), a given grating (n fixed) and a given incident angle (α), one wavelength can be observed at various diffracting angles β. The order has an effect on the resolution of the system and may help to improve resolution. Usually, 1st and 2nd orders are used only as light intensity decreases with the order.

Influence of focal length

Focal length of an instrument has an influence on resolution and on the amount of light reaching the detector. The more the focal length increases, the better the resolution is, but less light reaches the detector. Practically, ICP-OES spectrometers can use up to 1 meter focal length to improve resolution without sacrificing to the detection limits. HORIBA Scientific's ICP-OES spectrometers are equipped with 1 meter focal length optics ensuring for demanding applications and light throughput.

Effect of moving parts in the optics on stability

Stability of the instrument may be affected by optics movement if repeatability of the movement is not good. Recent improvements in mechanics lead to huge improvements in repeatability of position and thus huge improvements in stability. In addition, the use of a reference line that allows checking of the position before any acquisition helps to achieve excellent repeatability and then excellent stability of the optics. HORIBA Scientific's ICP-OES spectrometers use a direct drive high precision system for grating movements and a reference line to check for the practical position vs. theoretical one.

  • Products
    • By Products (A-Z)
    • Automotive
    • Medical
    • Process and Environment
    • Scientific
    • Semiconductor
  • Applications
    • Drinking Water Utilities
    • Automotive Manufacturing
    • Semiconductor Manufacturing Process
    • Research and Testing Laboratories
  • Technology
    • Glow Discharge Spectroscopy
    • Pressure-based Flowmetry
    • Quadrupole Mass Spectrometry
    • Raman Spectroscopy
  • Service
    • On-Site Support
    • Spare Parts and Consumables
  • Company
    • News
    • Events
    • Career
    • History
    • Corporate Culture
  • Contact
    • Contact Form
    • Worldwide Locations

Terms and Conditions Privacy Notice Cookies Imprint