HORIBA
  • Products
    • By Segment
      • Automotive
      • Medical
      • Process and Environmental
      • Semiconductor
      • Scientific
    • All Products (A-Z)
    • By Industry
      • Arts, Entertainment and Recreation
        • Art Conservation
        • Museums, Historical Sites and Similar Institutions
      • Education, R&D and Government Institutions
        • Universities
        • Research and Testing Laboratories
      • Energy and Environment
        • Battery
        • Coal and Consumable Fuels
        • Electric Utilities
        • Energy Fuel Oil
        • Environmental Countermeasures
        • Oil and Gas
        • Petroleum and Coal Products Manufacturing
      • Food and Beverage
        • Beverages
        • Food
        • Cosmetics
      • Health Care
        • Biotechnology
        • HORIBA In Vitro Diagnostic solutions for human health care
        • Life Sciences
        • Pharmaceuticals and Medicine Manufacturing
      • Industrials
        • Building Products
        • Commercial and Professional Services
        • Electrical Equipment
        • Machinery
      • Information Technology
        • Semiconductor Manufacturing Process
      • Materials
        • Chemicals
        • Chemical Manufacturing
        • Containers and Packaging
        • Nonferrous Metals
        • Nonmetallic Minerals
        • Paper, Forest Products and Manufacturing
        • Plastics and Rubber
        • Primary Metals
      • Mobility and Transportation
        • Automobiles and Components
        • Automotive Manufacturing
        • Other Transportation Equipment Manufacturing
      • Waste Management
        • Solid Waste Management and Remediation Services
        • Water Waste Management and Remediation Services
      • Water
        • Desalination
        • Drinking Water Utilities
        • High Purity Water
        • Other Industry Water
        • Water Reuse
    • By Technique
      • Atomic Spectroscopy
        • Energy Dispersive X-ray Fluorescence (ED-XRF)
        • Glow Discharge Optical Emission Spectrometry (GD-OES)
        • Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES)
        • Inorganic Elemental Analysis
        • Beta-ray Absorption Analyzer
      • Electrochemistry
        • Potentiometry based on Ion-Selective Electrode (ISE)
      • Life Science Techniques
        • Label-free Detection / Surface Plasmon Resonance Imaging (SPRi)
      • Mass Spectrometry
        • Plasma Profiling Time-Of-Flight Mass Spectrometry (PP-TOFMS)
        • Quadrupole Mass Spectrometry
      • Material Characterization
        • Colorimetry
        • Condensation Particle Counter (CPC)
        • Dynamic Light Scattering (DLS) Particle Size Distribution Analysis
        • Magneto-pneumatic Analysis
        • Mechanical Flowmetry
        • Pressure-based Mass Flowmetry
        • Spectroscopic Ellipsometry
        • Static Light Scattering (SLS) / Laser Diffraction Particle Size Distribution Analysis
        • Fluid Measurement and Control
      • Molecular Spectroscopy
        • Absorption and Transmission Spectroscopy (UV, Visible, NIR)
        • Cathodoluminescence (CL, CLUE)
        • Chemiluminescence
        • Fluorescence Spectroscopy
        • Fourier-Transform Infrared Spectroscopy (FTIR)
        • Non-Dispersive Infrared Spectroscopy (NDIR)
        • Non-Dispersive Ultra Violet Spectroscopy (NDUV)
        • Photoluminescence (PL) & Electroluminescence (EL)
        • Quantum Cascade Laser (QCL) Spectroscopy
        • Raman Imaging and Spectroscopy
        • Vacuum Ultra Violet Spectroscopy
      • Radioactivity
        • Crystal Scintillation
      • Surface Science Techniques
        • Plasma Profiling Time-Of-Flight Mass Spectrometry (PP-TOFMS)
        • AFM-Raman (co-localized measurements & TERS)
  • Applications
    • Arts, Entertainment and Recreation
      • Art Conservation
      • Museums, Historical Sites and Similar Institutions
    • Education, R&D and Government Institutions
      • Universities
      • Research and Testing Laboratories
    • Energy and Environment
      • Coal and Consumable Fuels
      • Electric Utilities
      • Energy Fuel Oil
        • Wear metals and additive Elements Analysis.
      • Environmental Countermeasures
      • Petroleum and Coal Products Manufacturing
        • Petrochemicals
      • Photovoltaics
      • Oil and Gas
      • RoHS and ELV
    • Food and Beverage
      • Agriculture & Crop Science
      • Research & Development
      • Beverages
      • Food
      • Food & Beverage Manufacturing
    • Health Care
      • Biochemistry
      • Biotechnology
        • High Throughput Screening of Affimer Proteins using SPRi Label-Free Technology
        • Analytical Chemistry
      • Human Health Care
      • Life Sciences
        • Cell Biology
        • Blood Testing
        • Proteomics
        • Microbiology
        • Structural Biology
        • Genomics
        • Bioengineering
        • Nanoscience
        • Personal Care
      • Pharmaceuticals and Medicine Manufacturing
        • Cosmetics
        • Drug Discovery and Development
        • Drug Delivery
        • Counterfeit
        • Quality Assurance
        • Vacuum Monitoring in Dryer Equipment for Freeze Dry in Pharmaceuticals and Medicine Manufacturing
        • Bioprocessing
        • Analytical Chemistry
    • Industrials
      • Battery
      • Commercial and Professional Services
        • Gas mass flow control and measurement for reference value of PM2.5 measurement
      • Construction & Engineering
      • Electrical Equipment
      • Machinery
    • Information Technology
      • Semiconductors
        • 2D Materials
        • Graphene
        • Photovoltaics
        • Determination of Perovskite Optical Constants
        • Display Technologies
        • Data Storage
        • Nanomaterials
      • Semiconductor Manufacturing Process
      • Technology Hardware and Equipment
    • Materials
      • Ceramics
      • Chemicals
        • Fertilizers, phyo-sanitary
        • Polymers & Plastics
        • Analytical Chemistry
      • Chemical Manufacturing
      • Construction Materials
      • Containers and Packaging
        • Quality control in the aluminium packaging industry
      • Metal Powder
      • Nonferrous Metals
      • Nonmetallic Minerals
        • Glass
        • Coatings
      • Paper, Forest Products and Manufacturing
      • Plastics and Rubber
      • Primary Metals
      • Material Research
        • Corrosion
        • 2D Materials
        • Quantum Dots
        • Carbon based Materials - Graphene
        • Nanomaterials
      • Photovoltaics
      • Forensics
      • Metal and Mining
        • Gemstones
    • Mobility and Transportation
      • Automotive Manufacturing
      • Engine, Turbine and Power Transmission Equipment Manufacturing
      • Real Driving Emissions
      • RDE Plus
    • Waste Management
      • Solid Waste Management and Remediation Services
      • Water Waste Management and Remediation Services
        • Repeatability of Traces and Major Elements in Water
        • Very Rapid Analysis of Supply Water, Sludge From Purification Station and Animal Food
        • Waste Water and Soil Analysis
        • Waste Water Treatment and Disposal
    • Water
      • Drinking Water Utilities
      • Water Reuse
        • Water Testing
      • General Water Measurement
  • Technology
    • Measurement and Control Techniques
      • Electrochemistry
        • The Story of pH
        • The Basis of pH
        • Measurement of pH
        • The Story of Ion
        • The Basis of Ion
        • Measurement of Ion
        • The Story of ORP
        • The Basis of ORP
        • Measurement of ORP
        • The Story of Conductivity
        • The Basis of Conductivity
        • Measurement of Conductivity
        • The Story of Salt
        • The Story of Dissolved Oxygen
        • The Basis of DO Measurement
        • LAQUA Electrode Technology
      • Elemental Analysis
        • X-ray Fluorescence Spectroscopy (XRF)
        • Glow Discharge Optical Emission Spectroscopy
        • Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES)
        • Carbon/Sulfur & Oxygen/Nitrogen/Hydrogen Analysis
      • Health Care
        • Multi Distribution Sampling System (MDSS)
        • Reticulocytes Analysis
        • CBC + CRP
        • Slide Production
        • Automatic Rerun
        • Absorbance
        • Fluorescence
        • Flow cytometry
        • Impedance / Resistivity
        • Sedimentation
        • Spectrophotometry
        • Potentiometry
        • INR screening
        • Clotting
        • Turbidimetric
        • Chromogenic
      • Light Scattering
        • Dynamic Light Scattering (DLS) Particle Size Distribution Analysis
        • Molecular Weight
        • Raman Scattering
        • Static Light Scattering (SLS) / Laser Diffraction Particle Size Distribution Analysis
        • Zeta Potential
      • Fluid Control
        • Thermal Mass Flowmetry
      • Mass Spectrometry
        • Quadrupole Mass Spectrometry
      • Microscopy and Imaging
        • AFM-Raman
        • Atomic Force Microscopy [AFM]
        • Cathodoluminescence
        • Image Analysis of Particles
        • Micro-X-ray Fluorescence
      • Physisorption
        • Surface Area
      • Spectroscopy
        • Cathodoluminescence Spectroscopy
        • AFM-Raman
        • Detectors
        • 50 years of Diffraction Gratings
        • Diffraction Gratings Ruled and Holographic
        • Fluorescence Spectroscopy
        • Raman Spectroscopy
        • Spectrometers, Monochromators and Spectrographs
        • Spectroscopic Ellipsometry
        • Vacuum Ultra Violet Spectroscopy
        • X-ray Fluorescence
      • Surface Plasmon Resonance
        • Surface Plasmon Resonance Imaging (SPRi)
  • Service
    • Analysis Services
      • Analysis Centers and Services
      • EMC Analysis Service
    • Calibration and Certification
      • Calibration Centers
    • Customer Support
      • HORIBA Medical Documentation Database
      • Medical Customer Support
      • On-Site Support
      • Software Upgrades
      • STARS Helpdesk
    • Maintenance
      • Dynamometer and Other Overhaul Services
      • Periodic Maintenance
    • Spare Parts and Consumables
    • Testing and Consulting
      • Testing Centers
    • Training
      • Product Training
        • Scientific Product Training
        • Automotive Product Training
        • Medical Product Training
      • Technology Training
        • Raman Training
        • Glow Discharge Training
        • Fluorescence Training
        • Ellipsometry Training
        • SPRi Training
        • Inductively Coupled Plasma Training
        • Inductively Coupled Plasma Training (USA)
        • PSA Training
        • Carbon, Sulfur, Oxygen, Nitrogen and Hydrogen Analyzers Training (USA)
        • Online-OnSite Training
  • Company
    • About HORIBA
      • Message
      • Company Profile
        • Board of Directors
        • Corporate Officers
      • Culture
        • Corporate Philosophy
      • History
        • 1945–1960s
        • 1970s
        • 1980s
        • 1990s
        • 2000s
        • 2010s
      • Technical Journal "Readout"
        • Masao Horiba Awards Research Articles
        • Readout No. E54 - Microplastics and Nanoplastics: Analysis and Method Development
        • Readout No. E53 - 2019 Masao Horiba Awards - Advanced Analytical and Measurement Technologies for Efficient Control System to Maximize the Performance of Electric Power and Batteries Usage
        • Readout No. E52 - Green Innovation for Marine Shipping Industry
        • Readout No. E51 - 2018 Masao Horiba Awards Advanced analytical and measurement technologies in semiconductor manufacturing processes
        • Readout No. E50 - Low-Carbon Society and Environmental Improvement
        • Readout No. E49 - Photonic Instrumentation in Life Science
        • Readout No. E48 - Water Measurement Experts
        • Readout No. E47 - Application for Semiconductor Manufacturing Process
        • Readout No. E46 - New Development for Automotive Test Systems
        • Readout No. E45 - Application Technology in Analysis
        • Readout No. E44 - Contribution of Diagnostics to Total Medical Care/Healthcare
        • Readout No. E43 - Watching the Environmental and Society with Measurements
        • Readout No. E42 - More Efficient Testing on Automotive Development, Improving the Accuracy of Fuel Consumption Measurement
        • Readout No. E41 - Application
        • Readout No. E40 - Application
        • Readout No. E18 - EUROPE
        • Readout No. E17 - AMERICA
        • Readout No. E16 - Chinese (Asia)
        • Readout No. E15 - Technologies for HORIBA STEC
        • Readout No. E14 - Masao HORIBA Awards"Measurement of Bioparticles" and "Measurement of Internal Combustion"
        • Readout No. E13 - Technologies for Automotive Testing
        • Readout No. E12 - Masao Horiba Awards "X-ray Analysis Technology"
        • Readout No. E11 - The Second Masao Horiba Awards
        • Readout No. E10 - Environmental Analysis Technologies for the Management of Global Environment and the Development of Industry
        • Readout No. E09 - The First Dr.Masao Horiba's Award and the 50th Anniversary Products
        • Readout No. E08 - Products and Technologies of HORIBA ABX
        • Readout No. E07 - Products and Technologies of Jobin Yvon HORIBA Group
        • Readout No. E06 - 50th Anniversary of HORIBA, Ltd. Products and Technology of HORIBA Group
        • Readout No. E05 - Semiconductor Instruments
        • Readout No. E04 - Hematology Instruments
        • Readout No. E03 - Paticulate Matter
        • Readout No. E02 - The Technolgy Alliance for X-ray Analysis
        • Readout No. E01 - the Analysis of the Global Environment
      • Virtual Patent Marking
    • Events
    • Career
    • Investor Relations
      • Home
      • Investor Relations News
      • Management Policies
        • Message from the CEO
        • Mid-Long Term Management Plan
        • Corporate Governance
        • Corporate Culture "Joy and Fun"
        • Corporate Philosophy
      • IR Library
        • Financial Statements
        • Presentation Materials
        • HORIBA Report
        • Financial Information
      • Stock Information
        • Basic Stock Information
      • Investor Relations Contact
      • Other IR Information
        • Investor Relations Calendar
        • Disclaimer
    • News
    • Social Responsibility
      • Home
      • Message
      • HORIBA's CSR
        • CSR Policy, CSR Promotion System
        • UN Global Compact
        • HORIBA and the SDGs
      • Environment
        • Policy
        • Environmental Activities
        • Eco-Friendly Products
        • Actions for RoHS Directive, REACH Regulation and GHS Regulations
      • Social
        • Home
        • Integrated Management System
        • Quality
        • Occupational safety and health
        • Promotion of Diversity
        • Material Procurement
        • Social Activities
      • Governance
        • Corporate Governance
        • Code of Ethics
        • Internal Controls
        • Compliance Promotion Systems
        • Risk Management
      • HORIBA Special Contents
      • Library
      • HORIBA Group Social Media
        • Social Media Registered Accounts
        • HORIBA Group Social Media Policy
        • HORIBA Group Terms of Use for Social Media
      • Integrated Report
    • Group Companies
      • Americas
        • Brazil
        • Canada
        • United States
      • Asia
        • China
        • India
        • Indonesia
        • Japan
        • Korea
        • Philippines
        • Singapore
        • Taiwan
        • Thailand
        • Vietnam
      • Europe
        • Austria
        • Belgium
        • Czech Republic
        • France
        • Germany
        • Italy
        • Netherlands
        • Poland
        • Portugal
        • Romania
        • Russia
        • Spain
        • Sweden
        • Turkey
        • United Kingdom
  • Contact
    • Contact Form
    • Worldwide Locations

Fluorescence Spectroscopy open open
  • Fluorescence Spectroscopy
  • Principles and Theory of Fluorescence Spectroscopy
  • What is the Jablonski Diagram?
  • What is a Fluorescence Measurement?
  • Steady State Fluorescence Techniques
  • What is Fluorescence Anisotropy or Fluorescence Polarization?
  • What are Luminescence Quantum Yields?
  • What is Ratiometric Fluorescence?
  • What is an Excitation Emission Matrix (EEM)?
  • What is A-TEEM spectroscopy?
  • What is Singlet Oxygen?
  • How to Calculate Signal to Noise Ratio
  • Fluorescence Lifetime Techniques
  • Products Using Fluorescence Spectroscopy
  • HORIBA
    • Products
    • Applications
    • Technology
    • Service
    • Company
    • Contact
    Technology
    • Measurement and Control Techniques
    Measurement and Control Techniques
    • Electrochemistry
    • Elemental Analysis
    • Health Care
    • Light Scattering
    • Fluid Control
    • Mass Spectrometry
    • Microscopy and Imaging
    • Physisorption
    • Spectroscopy
    • Surface Plasmon Resonance
    Spectroscopy
    • Cathodoluminescence Spectroscopy
    • AFM-Raman
    • 50 years of Diffraction Gratings
    • Diffraction Gratings Ruled and Holographic
    • X-ray Fluorescence
    Fluorescence Spectroscopy
    • What is Fluorescence Spectroscopy?
    • Principles and Theory of Fluorescence Spectroscopy
    • What is the Jablonski Diagram?
    • What is a Fluorescence Measurement?
    • Steady State Fluorescence Techniques
    • What is Fluorescence Anisotropy or Fluorescence Polarization?
    • What are Luminescence Quantum Yields?
    • What is Ratiometric Fluorescence?
    • What is an Excitation Emission Matrix (EEM)?
    • What is A-TEEM spectroscopy?
    • What is Singlet Oxygen?
    • How to Calculate Signal to Noise Ratio
    • Fluorescence Lifetime Techniques
    • Products Using Fluorescence Spectroscopy
    Fluorescence Lifetime Techniques

Fluorescence Lifetime Techniques: TCSPC, FRET, TRES, and SSTD

What is Time Correlated Single Photon Counting or TCSPC?

TCSPC stands for time-correlated single photon counting. It is a method of using the timing of a pulsed excitation source, like a laser or LED, with the timing of the arrival of single photons on a detector to reconstruct the lifetime decay over many events (repetition of pulses and photons detected). This technique is based on the fact that the probability of detecting a single photon at time, t after an exciting pulse is proportional to the fluorescence intensity at time t.

The repetition of a laser or LED pulsed at relatively high repetition rate (10 kHz to 100 MHz) is synchronized with the time the next photon arrives at a detector (i.e. PMT). Timing electronics in the form of a time-to-digital converter or time-to-amplitude converter (TAC) are used to record these events in succession, until sufficient statistics are collected to reconstruct the decay. The decay is then fit to an exponential function to model the lifetime decay (t). TCSPC is typically used to measure fluorescence lifetimes from the picosecond to microsecond time scale.

Can I measure kinetic processes with fluorescence lifetimes?

Using the kinetic TCSPC mode, individual measurements in as little as 1 ms can be made and up to 10,000 measurements can be seamlessly acquired. As long as a fluorescence lifetime change occurs, then this approach, rather than intensity, can be used to follow a kinetic process.

Obviously, a sufficient number of photons are needed to be able to analyze the data. This can be enhanced by using a very high repetition rate, but the lifetime and time range needs to be considered, so as not to re-excite the sample before it has completely decayed. The lifetime data can then be used to construct kinetic traces for the process.

What is Förster Resonance Energy Transfer or FRET?

A summary of Förster Resonance Energy Transfer (FRET), and equations for FRET efficiency (E) and distance (r)

Fig. 40: A summary of FRET and equations for FRET efficiency (E) and distance (r)

If you can measure fluorescence, you can measure FRET (Förster Resonance Energy Transfer). FRET is the interpretation of the measurement result, rather than a measurement technique. FRET occurs when the emission of a donor molecule overlaps with the absorption of an acceptor molecule. When the two are close enough, they undergo a dipole-dipole interaction and energy is transferred. The distance at which there is 50% transfer energy is called the Förster distance and this value is typically known for common FRET pairs. By measuring the change of fluorescence intensity or lifetime of the donor molecule in the presence of the acceptor, the FRET efficiency and therefore the distance between the two can be found. FRET can be measured using either fluorescence spectra (intensities) or fluorescence lifetimes.

Graph of the inverse relationship between FRET efficiency and distance between the donor (Coumarin) and acceptor (FAM) molecules.

Fig. 41: Coumarin is a donor for FAM, which is the acceptor molecule. FAM fluorescence increases as the FAM gets closer in distance to the coumarin, increasing the FRET efficiency.

Several measurements are needed; ID, the intensity (or tD, the lifetime) measured at emission peak of donor alone, IDA, the intensity (or tDA, the lifetime) measured at emission peak of donor in presence of an acceptor, IA, the intensity (or tA, the lifetime) measured at emission peak of donor with the presence of an acceptor but not the donor and IB, the intensity (or tB, the lifetime) measured at emission peak of donor using blank solution (i.e. buffer only). From these, the efficiency, E, can then be used along with the Förster distance (R0) to calculate R, the distance between the donor and acceptor molecules being measured. See the equations in the figure above.

FRET principle: the efficiency of the energy transfer is inversely proportional to the sixth power of the distance between donor and acceptor

Fig. 42: FRET principle

Download the FRET Technical Note

PDF
0.21 MB
thumbnail
Förster resonance energy transfer (FRET)
Förster resonance energy transfer (FRET) Technical Note
open

How can time-resolved fluorescence help with analyzing quenching experiments?

How Time Resolved Fluorescence helps with analyzing quenching experiments

Fig. 43: Static and dynamic quenching

Quenching refers to the reduction in fluorescence emission, i.e., an increase in the non-radiative decay rate (knr). Quenching can be divided into “static” and “dynamic” forms. In both cases, the emission intensity deceases, but only in dynamic quenching is there a change in the fluorescence lifetime. Note: If the kinetics follow Stern-Volmer kinetics and an average lifetime is used, then this should be calculated using the intensity average.

How will photobleaching affect my measurement?

Learn how photobleaching affects your TCSPC measurements: Photobleaching will increase the measurement run time as it reduces the number of fluorophores emitting and the emission intensity. The lifetime will be unaffected.

Fig. 44: Photobleaching of sample obvious in intensity measurement

The effect of photobleaching will increase the measurement run time as it effectively reduces the number of fluorophores emitting (i.e., acts like a decrease in concentration), and reduces the emission intensity. The lifetime will be unaffected.

What are the applications of TRES (time-resolved emission spectra)?

 TRES of 2-naphthol and 2-naptholate A

Fig. 45: TRES of 2-naphthol and 2-naptholate A: Steady state spectra for 2-naphthol in PBS buffer, pH 7.4. B: Fluorescence decays at different wavelengths across the emission spectrum. C. Biexponential decay rates at different wavelengths across the spectrum, overlaid with the steady state emission spectrum. D. Time slices: the emission spectrum at different times during the fluorescence decay of 2-naphthol

Time-resolved emission spectral measurement is a technique that measures the fluorescence decay at incremental wavelengths across the emission spectrum of a sample. A 3D plot of intensity versus time versus wavelength is obtained. By looking at this 3D data set in the direction of spectra at different times instead of decays at different wavelengths, the time-resolved emission spectrum can be measured. If a sample contains multiple emitters with overlapping spectra but different lifetimes, the individual spectra of these components can be separated using TRES.

For example, 2-naphthol becomes ionized to make 2-naphtholate in the excited state. (Koti, 2001). The emission spectrum in the steady state shows two peaks, indicating both species are present. Measuring the lifetime at incremental wavelengths across the emission spectrum show very different decay rates at each emission peak. By fitting the decays, one can see how the component lifetimes and/or amplitudes change at different emission wavelengths.

For 2-naphthol, the emission peak of 2-naphthol at 354 nm has a different lifetime than that of 2-naptholate, which has an emission peak around 414 nm. The 2-state model of ionized and non-ionized 2-naphthol is clearly shown in the TRES. Two time constants represent the different decay times for 2-naphthol (3.4 ns dominant at 357 nm) and 2-naphtholate (9.4 ns dominant at 414 nm). The data shown below was measured on a FluoroMax-4 with FluoroHub TCSPC electronics and a NanoLED-280 excitation source operating at 1 MHz.

Another use of TRES is the measurement of solvent reorientation time constants. (Horng, 1995). By looking at a single fluorophore and how the emission spectrum shifts over time, the peak energy versus time can be plotted and fit to get a time constant. The shift of the spectrum in this case can be due to solvent molecules reorienting their dipole moments in response to an excited state dipole moment of the fluorophore. By fitting the peak energy of the emission spectrum over time, the reorientation time constant(s) of the solvent molecules can be obtained. (Horng, 1995).

Can I measure molecular size/binding?

Yes. There are a couple of ways to do this, depending on the sample. A kinetic TCSPC measurement can be performed to monitor binding if the lifetime changes during the binding process. Time-resolved anisotropy can also be employed, as binding will affect the rotational correlation time. Because this is due to the change in effective size of the molecule, the rotational correlation time is proportional to the effective volume of the molecule.

What are the applications of phosphorescence measurements?

The applications of phosphorescence measurements

Fig. 46: Left: Luminescence spectra of peptide+terbium with (green) and without (red) a 50-μs delay. lex=285 nm. Center: Luminescence spectra of peptide+fluorescein with (green) and without (red) a 50-μs delay. Right: Luminescence spectra of complex with (red) 0.67 μM fluorescein and no delay after excitation, (green) 0.67 μM fluorescein and 50-μs delay after excitation and (blue) no fluorescein and 50-μs delay after excitation.

In one example, a delay is used after the lamp has flashed to measure the phosphorescence spectrum. Without a delay, both the short-lived fluorescence from the peptide in this sample as well as the longer-lived phosphorescence of the terbium can be observed.

The applications of phosphorescence measurements

Fig. 47: Left: Luminescence decay of Er3+ excited using a S-970, with emission at 1550 nm, monitored with NIR detector. Inset, the steady state spectrum. Top Right: Example of sample form for different lanthanide-containing glasses. Bottom Right: Distribution analysis of Er3+ in a garnet containing glass. Measured using a FluoroCube with S-370 excitation and TBX detection at 545 nm. A 2-exponential fit returned lifetimes of 11 and 25 μs with a similar

By varying the delay, one can selectively detect species with longer-lived phosphorescence separate from background fluorescence in the same sample.

The composition of lanthanides in glass materials can be studied using time-resolved phosphorescence decays. Here is data from the study of erbium content in different glasses using this method. The lifetime of erbium can vary with different types of glass and processes used to make the glass.

What is the boxcar technique?

PL decay of europium chloride in water

Fig. 48: PL decay of europium chloride in water, having a lifetime of 114 μs, measured on a HORIBA Fluorolog-3-22 with xenon flash lamp.

The boxcar technique, or boxcar averaging, is a method to measure a phosphorescence or long-lived fluorescence decay by integrating at fixed integration windows across the decay time of the signal.

A pulsed source, such as a xenon flash lamp, is flashed and a delay is set after the pulse (ideally a time when the lamp flash is completed). The detector measures an integration window repeatedly to get a statistical average of the intensity at that window after the flash. Then, the integration window is moved incrementally across the decay to longer decay times. In this way, a decay is produced and can be fit with an exponential decay to get the lifetime by the inverse of the decay rate. The boxcar technique can be very slow, especially with long-lifetime decays and weak emitters. However, depending on the width of the xenon pulse, lifetimes between 10 μs and seconds can be resolved in a relatively low cost way, using a tunable light source.

What is the SSTD Technique?

An example application of SSTD: room temperature phosphorescence (RTP) of Nase T1 tryptophan

Fig. 49: PL decays of Nd++ doped glass measured with N2/dye laser excitation and InGaAs NIR detector at three different emission wavelengths.

SSTD stands for single shot transient digitizer. The SSTD technique utilizes a pulsed light source, either a pulsed laser or a xenon flash lamp to acquire an entire phosphorescence decay curve from each flash of the pulsed source. After each pulse, the decay is captured and digitized in real time with a PMT and a transient digitizer. A rapid signal averaging can easily be achieved, since a complete decay is measured after each shot. The time-resolved spectra can easily be measured by numerical integration of the decay signal within the user defined time range and scanning a monochromator. This allows for discriminating spectra based on the lifetime of the respective excited state.

Phenanthrene fluorescence and phosphorescence spectra measured while increasing the delay time at 2 μs increments for signal integration.

Fig. 50: Phenanthrene fluorescence and phosphorescence spectra measured while increasing the delay time at 2 μs increments for signal integration. Measurements done at 77K in liquid nitrogen dewar accessory.

Fluorescence emission happens on the picosecond to nanosecond time scale, while phosphorescence that is measured with SSTD occurs on the microsecond to second time scale. By varying the temporal position and the width of the signal etection gate, you can selectively detect fluorescence and phosphorescence spectra, as attested by phenanthrene spectra on the accompanying figure. Here, the emission of phenanthrene in a frozen glass was measured with a gradually increased time delay of the detection gate to diminish the contribution of fluorescence.

 

Discrimination between strong fluorescence and weak room temperature phosphorescence from RNase T1 tryptophan

Fig. 51: Left: Discrimination between strong fluorescence and weak room temperature phosphorescence from RNase T1 tryptophan by varying the temporal position and widths of the signal detection gate. Right: Phosphorescence decay of a weakly emitting RNase T1 tryptophan signal using the same instrument.

An example application of SSTD can be seen in the case of room temperature phosphorescence (RTP) of Nase T1 tryptophan. Here, the signal was extracted by gating out the overwhelming tryptophan fluorescence, which would have been extremely difficult to do using a continuous excitation source. The phosphorescence decay of the very weak emission was also measured on the same instrument by using the Single Shot Transient Digitizer (SSTD) function (HORIBA PTI QuantaMaster Series, 2017).

What is the Strobe Technique?

Schematic diagram of Strobe: Strobe Technique is an analog technique that is inherently less sensitive than TCSPC and does not enjoy true Poisson statistics as does TCSPC.

Fig. 52: Schematic diagram of Strobe: 1.) Software sets time delay, ti on delay gate generator (DDG) 2.) Laser is triggered, fires a pulse and excites sample 3.) Synch signal from laser triggers DDG, which outputs a pulse delayed by ti and triggers Avalanche 4.) Avalanche produces HV pulse which creates a transient gain on PMT at ti 5.) Intensity is measured at ti 6.) New ti is calculated and cycle is repeated

The stroboscopic optical boxcar technique is also referred to as the Strobe technique. It is a time domain, pulsed technique that flashes a pulsed light source and then activates a PMT, by sweeping a very short temporal duration high-voltage pulse down the dynode chain of the PMT. Subsequently, these flashes are repeated and through the use of a delay gate generator, the intensity is measured at a different time after the flash, to construct a decay curve. This method then uses multiple flashes and averaging to improve signal to noise of the decay.

The Strobe technique is an analog technique that is inherently less sensitive than TCSPC and does not enjoy true Poisson statistics as does TCSPC. However, it has the benefit of providing decays from about 150 ps to seconds with low repetition rate sources such as a laser diodes, LEDs, tunable Q-switched OPO, or nitrogen/dye lasers. The Strobe technique can measure ns time-resolved spectra directly by fixing the position of the delay gate and scanning the emission monochromator.

One of the advantages of the Strobe is that it can collect decay in both linear and non-linear (i.e. arithmetic progression and logarithmic) time scales. The latter greatly aids in resolving multi-exponential decays where lifetimes can differ by orders of magnitude. Another advantage of the Strobe technique is that it can work with low repetition rate tunable lasers, such as Q-switched/OPO or nitrogen/dye, which cannot be used with TCSPC. It can also work with LEDs and laser diodes operating up to about 25 kHz.

Complex decay from ZnO solid sample.

Fig. 53: Complex decay from ZnO solid sample measured with logarithmic timescale and analyzed with the Maximum Entropy Method lifetime distribution resulting in 5 distribution peaks.

An example of lifetime measured with strobe is the lifetime decay and distribution analysis of ZnO slides as shown in the following figure.

What is fluorescence Up-Conversion?

Fluorescence up conversion is a 2-photon process, whereas a sample is excited by two contemporaneous photons arriving simultaneously in the near-infrared wavelength region and fluorescence is emitted at higher energy (lower wavelength) in the visible region of the spectrum.

How can fluorescence Up-Conversion be measured?

Standard TCSPC sources may not have the required flux to perform up-conversion measurements. The image shows Fluorescence up conversion accessory for the Fluorolog-3 and a QuantaMaster that adds a 1-W or 2-W CW laser at 980 nm

Fig. 54: Fluorescence up conversion accessory for the Fluorolog-3 (left) and a QuantaMaster (right) adds a 1-W or 2-W CW laser at 980 nm

While the excitation power needed will depend on the sample in question, up-conversion typically requires a higher photon flux excitation source such as a laser. Because of this, standard TCSPC sources may not have the required flux to perform up-conversion measurements. Lasers that output 980 nm can be mounted directly onto a sample compartment to excite samples directly for measurement of up-conversion spectra, lifetimes, or even quantum yields. Q-switched OPO lasers with efficient NIR output can also be used for the measurement of fluorescence up-conversion.

Steady state upconversion emission of Er3+ doped nanoparticles.

Fig. 55: Left: Steady state upconversion emission of Er3+ doped nanoparticles exhibiting 3 prominent peaks at 522, 540, and 661 nm. Right: Upconversion photoluminescence decay of the same nanoparticles excited at 980 nm and detected at 540 nm emission. The decay was fit with a 3-exponential decay equation resulting in 2 decay times and one rise time (negative decay amplitude). (Above data are courtesy of Dr. Robeth Victoria Manurung, Research for Electronics and Telecommunications – Indonesian Institute of Sciences)

Molecules that absorb light in the NIR and can be detected or even imaged in the visible range are useful. This is because high-energy UV excitation sources tend to photobleach or cause photo-damage in biological samples. NIR sources are exciting at lower energy and typically do not have this issue. Molecules that exhibit fluorescence up-conversion include lanthanides, semiconductor nanoparticles and quantum dots. The same 980nm DPSS laser can be pulsed by TTL pulses and used for the PL up-conversion lifetime measurements, either with the MCS function of the TCSPC board or SSTD technique.

Although fluorescence (and phosphorescence) has a large range of applications, there are two major areas of research where the use of this phenomenon excels:

  • Life sciences
  • Materials science

 

In any application where steady state fluorescence is found, it can be advantageous to employ lifetime methods to obtain information. Some of these applications and fluorescence techniques that can be employed in their study are illustrated below.

Life Sciences

STRUCTURE/CONFORMATION

SIZE/MOBILITY

FUNCTION

Monitor

  • Viscosity
  • Rotational diffusion
  • Restricted mobility

 

Using techniques such as

  • Fluorescence lifetime
  • TRES
  • FRET
  • TR Anisotropy
  • Phosphorescence lifetime
 

Monitor

  • Viscosity
  • Rotational diffusion
  • Binding
  • Restricted mobility

 

Using techniques such as

  • Fluorescence lifetime
  • FRET
  • TR Anisotropy
 

Monitor

  • Binding of proteins, ligands, drugs, etc.
  • Bound vs. unbound
  • Change in rate of rotation of species upon binding

 

Using techniques such as

  • Fluorescence lifetime
  • TR Anisotropy
  • Fluorescence quenching
 

 

Material Sciences

SEMICONDUCTORS

GLASSES & POLYMERS

NANOPARTICLAS INCLUDING QUANTUM DOTS

Monitor

  • Effects of electronic changes
  • Efficiency of charge separation
  • Effect of dopants

 

Using techniques such as

  • Fluorescence lifetime
  • TRES
  • FRET
  • TR Anisotropy

 

Applications

  • Solar panels
  • Photovoltaics
  • Lab on a chip
 

Monitor

  • Rotational diffusion
  • Viscosity
  • Lanthanide luminescence
  • Binding
  • Restricted mobility

 

Using techniques such as

  • Fluorescence lifetime
  • FRET
  • TR Anisotropy
  • Phosphorescence lifetime

 

Applications

  • Telecommunications
  • Optoelectronics
  • Biosensors
  • Display panels
  • Laser technology
 

Monitor

  • Binding of biomolecules
  • Biosensing
  • Bound vs. unbound
  • Change in rate of rotation of species upon binding

 

Using techniques such as

  • Fluorescence lifetime
  • TR Anisotropy
  • Fluorescence quenching
  • FRET

 

Applications

  • Biosensors
  • Nanocrystal lasers
  • Clinical applications
  • Cell labelling
  • Cellular imaging general
 

Download the Time‐resolved fluorescence lifetime measurements Technical Note

PDF
0.23 MB
thumbnail
Time‐resolved fluorescence lifetime measurements
Time‐resolved fluorescence lifetime measurements Technical Note
open

Previous

Next

REQUEST FOR INFORMATION

Do you have any questions or requests? Use this form to contact our specialists.

  • Products
    • By Products (A-Z)
    • Automotive
    • Medical
    • Process and Environment
    • Scientific
    • Semiconductor
  • Applications
    • Drinking Water Utilities
    • Automotive Manufacturing
    • Semiconductor Manufacturing Process
    • Research and Testing Laboratories
  • Technology
    • Glow Discharge Spectroscopy
    • Pressure-based Flowmetry
    • Quadrupole Mass Spectrometry
    • Raman Spectroscopy
  • Service
    • On-Site Support
    • Spare Parts and Consumables
  • Company
    • News
    • Events
    • Career
    • History
    • Corporate Culture
  • Contact
    • Contact Form
    • Worldwide Locations

Terms and Conditions Privacy Notice Cookies Imprint