HORIBA
  • Products
    • Automotive
    • Medical
    • Process and Environmental
    • Scientific
    • Semiconductor
    • Water & Liquid
    • All Products (A-Z)
    • By Industry
      • Arts, Entertainment and Recreation
        • Art Conservation
        • Museums, Historical Sites and Similar Institutions
      • Education, R&D and Government Institutions
        • Universities
        • Research and Testing Laboratories
      • Energy and Environment
        • Battery
        • Coal and Consumable Fuels
        • Electric Utilities
        • Energy Fuel Oil
        • Environmental Countermeasures
        • Oil and Gas
        • Petroleum and Coal Products Manufacturing
      • Food and Beverage
        • Beverages
        • Food
        • Cosmetics
      • Health Care
        • Biotechnology
        • HORIBA In Vitro Diagnostic solutions for human health care
        • Life Sciences
        • Pharmaceuticals and Medicine Manufacturing
      • Industrials
        • Building Products
        • Commercial and Professional Services
        • Electrical Equipment
        • Machinery
      • Information Technology
        • Semiconductor Manufacturing Process
      • Materials
        • Chemicals
        • Chemical Manufacturing
        • Containers and Packaging
        • Nonferrous Metals
        • Nonmetallic Minerals
        • Paper, Forest Products and Manufacturing
        • Plastics and Rubber
        • Primary Metals
      • Mobility and Transportation
        • Automobiles and Components
        • Automotive Manufacturing
        • Other Transportation Equipment Manufacturing
      • Waste Management
        • Solid Waste Management and Remediation Services
        • Water Waste Management and Remediation Services
      • Water
    • By Technique
      • Atomic Spectroscopy
        • Energy Dispersive X-ray Fluorescence (ED-XRF)
        • Glow Discharge Optical Emission Spectrometry (GD-OES)
        • Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES)
        • Inorganic Elemental Analysis
        • Beta-ray Absorption Analyzer
      • Electrochemistry
        • Potentiometry based on Ion-Selective Electrode (ISE)
      • Life Science Techniques
        • Label-free Detection / Surface Plasmon Resonance Imaging (SPRi)
      • Mass Spectrometry
        • Plasma Profiling Time-Of-Flight Mass Spectrometry (PP-TOFMS)
        • Quadrupole Mass Spectrometry
      • Material Characterization
        • Colorimetry
        • Condensation Particle Counter (CPC)
        • Dynamic Light Scattering (DLS) Particle Size Distribution Analysis
        • Magneto-pneumatic Analysis
        • Mechanical Flowmetry
        • Pressure-based Mass Flowmetry
        • Spectroscopic Ellipsometry
        • Static Light Scattering (SLS) / Laser Diffraction Particle Size Distribution Analysis
      • Molecular Spectroscopy
        • Absorption and Transmission Spectroscopy (UV, Visible, NIR)
        • Cathodoluminescence (CL, CLUE)
        • Chemiluminescence
        • Fluorescence Spectroscopy
        • Fourier-Transform Infrared Spectroscopy (FTIR)
        • Non-Dispersive Infrared Spectroscopy (NDIR)
        • Non-Dispersive Ultra Violet Spectroscopy (NDUV)
        • Photoluminescence (PL) & Electroluminescence (EL)
        • Quantum Cascade Laser (QCL) Spectroscopy
        • Raman Imaging and Spectroscopy
        • Vacuum Ultra Violet Spectroscopy
      • Radioactivity
        • Crystal Scintillation
      • Surface Science Techniques
        • Plasma Profiling Time-Of-Flight Mass Spectrometry (PP-TOFMS)
        • AFM-Raman (co-localized measurements & TERS)
  • Applications
    • Arts, Entertainment and Recreation
      • Art Conservation
      • Museums, Historical Sites and Similar Institutions
    • Education, R&D and Government Institutions
      • Universities
      • Research and Testing Laboratories
    • Energy and Environment
      • Coal and Consumable Fuels
      • Electric Utilities
      • Energy Fuel Oil
        • Wear metals and additive Elements Analysis.
      • Environmental Countermeasures
      • Petroleum and Coal Products Manufacturing
        • Petrochemicals
      • Photovoltaics
      • Oil and Gas
      • RoHS and ELV
    • Food and Beverage
      • Agriculture & Crop Science
      • Research & Development
      • Beverages
      • Food
      • Food & Beverage Manufacturing
    • Health Care
      • Biochemistry
      • Biotechnology
        • High Throughput Screening of Affimer Proteins using SPRi Label-Free Technology
        • Analytical Chemistry
      • Human Health Care
      • Life Sciences
        • Cell Biology
        • Blood Testing
        • Proteomics
        • Microbiology
        • Structural Biology
        • Genomics
        • Bioengineering
        • Nanoscience
        • Personal Care
      • Pharmaceuticals and Medicine Manufacturing
        • Cosmetics
        • Drug Discovery and Development
        • Drug Delivery
        • Counterfeit
        • Quality Assurance
        • Vacuum Monitoring in Dryer Equipment for Freeze Dry in Pharmaceuticals and Medicine Manufacturing
        • Bioprocessing
        • Analytical Chemistry
    • Industrials
      • Battery
      • Commercial and Professional Services
        • Gas mass flow control and measurement for reference value of PM2.5 measurement
      • Construction & Engineering
      • Electrical Equipment
      • Machinery
    • Information Technology
      • Semiconductors
        • 2D Materials
        • Graphene
        • Photovoltaics
        • Determination of Perovskite Optical Constants
        • Display Technologies
        • Data Storage
        • Nanomaterials
      • Semiconductor Manufacturing Process
      • Technology Hardware and Equipment
    • Materials
      • Ceramics
      • Chemicals
        • Fertilizers, phyo-sanitary
        • Polymers & Plastics
        • Analytical Chemistry
      • Chemical Manufacturing
      • Construction Materials
      • Containers and Packaging
        • Quality control in the aluminium packaging industry
      • Metal Powder
      • Nonferrous Metals
      • Nonmetallic Minerals
        • Glass
        • Coatings
      • Paper, Forest Products and Manufacturing
      • Plastics and Rubber
      • Primary Metals
      • Material Research
        • Corrosion
        • 2D Materials
        • Quantum Dots
        • Carbon based Materials - Graphene
        • Nanomaterials
      • Photovoltaics
      • Forensics
      • Metal and Mining
        • Gemstones
    • Mobility and Transportation
      • Automotive Manufacturing
      • Engine, Turbine and Power Transmission Equipment Manufacturing
      • Real Driving Emissions
      • RDE Plus
    • Waste Management
      • Solid Waste Management and Remediation Services
      • Water Waste Management and Remediation Services
        • Repeatability of Traces and Major Elements in Water
        • Very Rapid Analysis of Supply Water, Sludge From Purification Station and Animal Food
        • Waste Water and Soil Analysis
        • Waste Water Treatment and Disposal
    • Water
  • Technology
    • Measurement and Control Techniques
      • Electrochemistry
        • The Story of pH
        • The Basis of pH
        • Measurement of pH
        • The Story of Ion
        • The Basis of Ion
        • Measurement of Ion
        • The Story of ORP
        • The Basis of ORP
        • Measurement of ORP
        • The Story of Conductivity
        • The Basis of Conductivity
        • Measurement of Conductivity
        • The Story of Salt
        • The Story of Dissolved Oxygen
        • The Basis of DO Measurement
        • LAQUA Electrode Technology
      • Elemental Analysis
        • X-ray Fluorescence Spectroscopy (XRF)
        • Glow Discharge Optical Emission Spectroscopy
        • Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES)
        • Carbon/Sulfur & Oxygen/Nitrogen/Hydrogen Analysis
      • Health Care
        • Multi Distribution Sampling System (MDSS)
        • Reticulocytes Analysis
        • CBC + CRP
        • Slide Production
        • Automatic Rerun
        • Absorbance
        • Fluorescence
        • Flow cytometry
        • Impedance / Resistivity
        • Sedimentation
        • Spectrophotometry
        • Potentiometry
        • INR screening
        • Clotting
        • Turbidimetric
        • Chromogenic
      • Light Scattering
        • Dynamic Light Scattering (DLS) Particle Size Distribution Analysis
        • Molecular Weight
        • Raman Scattering
        • Static Light Scattering (SLS) / Laser Diffraction Particle Size Distribution Analysis
        • Zeta Potential
      • Fluid Control
      • Mass Spectrometry
        • Quadrupole Mass Spectrometry
      • Microscopy and Imaging
        • AFM-Raman
        • Atomic Force Microscopy [AFM]
        • Cathodoluminescence
        • Image Analysis of Particles
        • Micro-X-ray Fluorescence
      • Physisorption
        • Surface Area
      • Spectroscopy
        • Cathodoluminescence Spectroscopy
        • AFM-Raman
        • Detectors
        • 50 years of Diffraction Gratings
        • Diffraction Gratings Ruled and Holographic
        • Fluorescence Spectroscopy
        • Raman Spectroscopy
        • Spectrometers, Monochromators and Spectrographs
        • Spectroscopic Ellipsometry
        • Vacuum Ultra Violet Spectroscopy
        • X-ray Fluorescence
      • Surface Plasmon Resonance
        • Surface Plasmon Resonance Imaging (SPRi)
  • Service
    • Analysis Services
      • Analysis Centers and Services
      • EMC Analysis Service
    • Calibration and Certification
      • Calibration Centers
    • Customer Support
      • HORIBA Medical Documentation Database
      • Medical Customer Support
      • On-Site Support
      • Software Upgrades
      • STARS Helpdesk
    • Maintenance
      • Dynamometer and Other Overhaul Services
      • Periodic Maintenance
    • Spare Parts and Consumables
    • Testing and Consulting
      • Testing Centers
    • Training
      • Product Training
        • Scientific Product Training
        • Automotive Product Training
        • Medical Product Training
      • Technology Training
        • Raman Training
        • Glow Discharge Training
        • Fluorescence Training
        • Ellipsometry Training
        • SPRi Training
        • Inductively Coupled Plasma Training
        • Inductively Coupled Plasma Training (USA)
        • PSA Training
        • Carbon, Sulfur, Oxygen, Nitrogen and Hydrogen Analyzers Training (USA)
        • Online-OnSite Training
  • Company
    • About HORIBA
      • Company Profile
        • Corporate Officers
    • Events
    • Career
    • Investor Relations
      • Home
      • Investor Relations News
      • Management Policies
        • Message from the CEO
        • Mid-Long Term Management Plan
        • Corporate Governance
        • Corporate Culture "Joy and Fun"
        • Corporate Philosophy
      • IR Library
        • Financial Statements
        • Presentation Materials
        • HORIBA Report
        • Financial Information
      • Stock Information
        • Basic Stock Information
      • Investor Relations Contact
      • Other IR Information
        • Investor Relations Calendar
        • Disclaimer
    • News
    • Social Responsibility
      • Home
      • Message
      • HORIBA's CSR
        • CSR Policy, CSR Promotion System
        • UN Global Compact
        • HORIBA and the SDGs
      • Environment
        • Policy
        • Environmental Activities
        • Eco-Friendly Products
        • Actions for RoHS Directive, REACH Regulation and GHS Regulations
      • Social
        • Integrated Management System
        • Quality
        • Occupational safety and health
        • Material Procurement
        • Social Activities
      • Governance
        • Corporate Governance
        • Code of Ethics
        • Internal Controls
        • Compliance Promotion Systems
        • Risk Management
      • HORIBA Special Contents
      • Library
      • HORIBA Group Social Media
        • Social Media Registered Accounts
        • HORIBA Group Social Media Policy
        • HORIBA Group Terms of Use for Social Media
    • Group Companies
      • Americas
        • Brazil
        • Canada
        • United States
      • Asia
        • Japan
      • Europe
        • Austria
        • Belgium
        • Czech Republic
        • France
        • Germany
        • Italy
        • Netherlands
        • Poland
        • Portugal
        • Romania
        • Russia
        • Sweden
        • Turkey
        • United Kingdom
  • Contact
    • Contact Form
    • Worldwide Locations

Dynamic Light Scattering (DLS) Particle Size Distribution Analysis open open
  • Dynamic Light Scattering (DLS) Particle Size Distribution Analysis
  • Concentration Range for DLS Size Measurement
  • Z-Average
  • Top 10 Lists: DLS Sizing and ELS Zeta Potential
  • HORIBA
    • Products
    • Applications
    • Technology
    • Service
    • Company
    • Contact
    Technology
    • Measurement and Control Techniques
    Measurement and Control Techniques
    • Electrochemistry
    • Elemental Analysis
    • Health Care
    • Light Scattering
    • Fluid Control
    • Mass Spectrometry
    • Microscopy and Imaging
    • Physisorption
    • Spectroscopy
    • Surface Plasmon Resonance
    Light Scattering
    • Raman Scattering
    Dynamic Light Scattering (DLS) Particle Size Distribution Analysis
    • Dynamic Light Scattering (DLS) Particle Size Distribution Analysis
    • Choosing the Concentration Range for DLS Size Measurement
    • What is Z-Average
    • SZ-100 Top 10 Lists
    Dynamic Light Scattering (DLS) Particle Size Distribution Analysis

Back to Particle Characterization Products Overview

Dynamic Light Scattering (DLS) Particle Size Distribution Analysis

Dynamic Light Scattering Technology

Particle size can be determined by measuring the random changes in the intensity of light scattered from a suspension or solution. This technique is commonly known as dynamic light scattering (DLS), but is also called photon correlation spectroscopy (PCS) and quasi-elastic light scattering (QELS). The latter terms are more common in older literature.

After a few comments on the applications of dynamic light scattering, this page explains the technique beginning the actual phenomena under study (particle motion, not particle size). The nature of the measurement and data interpretation is then discussed. Finally, there are some concluding comments.

Applications for Dynamic Light Scattering

DLS is most commonly used to analyze nanoparticles. Examples include determining nanogold size, protein size, latex size, and colloid size. In general, the technique is best used for submicron particles and can be used to measure particle with sizes less than a nanometer. In this size regime (microns to nanometers) and for the purposes of size measurement (but not thermodynamics!) the distinction between a molecule (such as a protein or macromolecule) and a particle (such as nanogold) and even a second liquid phase (such as in an emulsion) becomes blurred. Dynamic light scattering can also be used as a probe of complex fluids such as concentrated solutions. However, this application is much less common than particle sizing.

Stokes Einstein: Relating Particle Size to Particle Motion

Small particles in suspension undergo random thermal motion known as Brownian motion. This random motion is modeled by the Stokes-Einstein equation. Below the equation is given in the form most often used for particle size analysis.

where

  • Dh is the hydrodynamic diameter (this is the goal: particle size!)
  • Dt is the translational diffusion coefficient (we find this by dynamic light scattering)
  • kB is Boltzmann’s constant (we know this)
  • T is thermodynamic temperature (we control this)
  • η is dynamic viscosity (we know this)  

The calculations are handled by instrument software. However, the equation does serve as important reminder about a few points. The first is that sample temperature is important, at it appears directly in the equation. Temperature is even more important due to the viscosity term since viscosity is a stiff function of temperature. Finally, and most importantly, it reminds the analyst that the particle size determined by dynamic light scattering is the hydrodynamic size. That is, the determined particle size is the size of a sphere that diffuses the way as your particle.

For those who work with protein sizing and other areas where hydrodynamic radius is more commonly used, note that the development here is around diameter. Radius calculations are the same except for a factor of two. 

Also, a note to those interested in polymer size. The hydrodynamic radius is not the same as the radius of gyration. Hydrodynamic sizes are more easily measured than radii of gyration and can be measured over a wider range of sizes. The conversion from hydrodynamic radius to radius of gyration is a function of chain architecture (including questions of random coil vs. hard sphere, globular, dendrimer, chain stiffness, and degree of branching).

How to Measure Particle Motion I: Dynamic Light Scattering Optical Setup

A top view of the optical setup for DLS is shown above.

Light from the laser light source illuminates the sample in the cell. The scattered light signal is collected with one of two detectors, either at a 90 degree (right angle) or 173 degree (back angle) scattering angle. The provision of both detectors allows more flexibility in choosing measurement conditions.  Particles can be dispersed in a variety of liquids. Only liquid refractive index and viscosity needs to be known for interpreting the measurement results.

The obtained optical signal shows random changes due to the randomly changing relative position of the particles. This is shown schematically in the graph below. 

The “noise” is actually due to particle motion and will be used to extract the particle size. In contrast to laser diffraction, DLS measurements are typically made at a single angle, although data obtained at several angles can be useful. In addition, the technique is completely noninvasive; the particle motion continues whether or not it is being probed by DLS.

The variations in the signal arise due to the random Brownian motion of the particles. Treating this random signal is discussed in the next section on extracting particle motion.

How to Extract Particle Diffusion Coefficient: Dynamic Light Scattering Data Interpretation

The signal can be interpreted in terms of an autocorrelation function. Incoming data is processed in real time with a digital signal processing device known as a correlator and the autocorrelation function as a function of delay time, τ, is extracted.

For a sample where all of the particles are the same size, the baseline subtracted autocorrelation function, C, is simply an exponential decay of the following form:

Γ is readily derived from experimental data by a curve fit. The diffusion coefficient is obtained from the relation Γ=Dtq2 where q is the scattering vector, given by q=(4πn/λ)sin(θ/2). The refractive index of the liquid is n. The wavelength of the laser light is λ, and scattering angle, θ. Inserting Dt into the Stokes-Einstein equation above and solving for particle size is the final step. 

Analyzing Real Particle Size Distributions I: The Method of Cumulants and Z-average

The discussion above can be extended to real nanoparticle samples that contain a distribution of particle sizes. The exponential decay is rewritten as a power series:

Once again, a decay constant is extracted and interpreted to obtain particle size. However, in this case, the obtained particle size, known as the z-average size, is a weighted mean size. Unfortunately, the weighting is somewhat convoluted. Recall that the decay constant is proportional to the diffusion coefficient. So, by dynamic light scattering one has determined the intensity weighted diffusion coefficient. The diffusion coefficient is inversely proportional to size. So, in truth, the “z-average size” is the intensity weighted harmonic mean size. This definition differs substantially from that of the z-average radius of gyration encountered in the light scattering study of polymers.

Despite the convoluted meaning, the z-average size increases as the particle size increases. And, it is extremely easy to measure reliably. For these reasons, the z-average size has become the accepted norm for particle sizing by dynamic light scattering. 

Analyzing Real Particle Size Distributions II: Size Distribution Data

While a detailed discussion is beyond the scope of this work, it is possible to extract size distribution data from DLS data. One can convert the measured autocorrelation function into what is known as an electric field autocorrelation function, g1(τ). Then use the following relationship between g1(τ) and the scattered intensity, S, for each possible decay constant, Γ. The overall electric field autocorrelation function is the intensity weighted sum of the decays due to every particle in the system.

Inversion of this equation, that is using experimentally determined values of g1(τ) to find values of S(Γ), will lead to information about the size distribution. Unlike the cumulants analysis discussed above, this is an ill-posed mathematical problem. Even so, the technique remains useful for interpreting DLS data.

Concluding Comments and Additional Thoughts

The underlying theory of measurement by dynamic light scattering was discussed. Many of the points on this web page are starting points for further investigation depending on the reader’s analytic needs and interests. All of these equations and the analysis are handled automatically in the HORIBA software. As such, dynamic light scattering has found application for determining protein size, nanoparticle size, and colloid size.

Technical Notes

PDF
0.3 MB
thumbnail
DLS of Size Standards
Dynamic light scattering provides fast, accurate, and repeatable nanoparticle size information. Applications include metal and oxide powders, latexes, drug delivery vehicles, and dozens other materials.
open
PDF
0.46 MB
thumbnail
Preparing Polystyrene Latex Standards for DLS
Latex is an important application for dynamic light scattering. In addition, monodisperse latex standards are often used to evaluate instrument performance. Frequently these materials are polystyrene and called “PSL standards” where PSL stands for polystyrene latex.
open

Browse Products

nanoPartica SZ-100V2 Series*
more nanoPartica SZ-100V2 Series*

Nanoparticle Analyzer

SZ-100
more SZ-100

Nanopartica Series Instruments

  • Products
    • By Products (A-Z)
    • Automotive
    • Medical
    • Process and Environment
    • Scientific
    • Semiconductor
  • Applications
    • Automotive Manufacturing
    • Semiconductor Manufacturing Process
    • Research and Testing Laboratories
  • Technology
    • Glow Discharge Spectroscopy
    • Pressure-based Flowmetry
    • Quadrupole Mass Spectrometry
    • Raman Spectroscopy
  • Service
    • On-Site Support
    • Spare Parts and Consumables
  • Company
    • News
    • Events
    • Career
    • History
    • Corporate Culture
  • Contact
    • Contact Form
    • Worldwide Locations

Terms and Conditions Privacy Notice Cookies Imprint