Aqualog - Water Treatment Plant Analyzer

Automated Organic Analysis & Early Warning Sentinel

A better, faster and economical method for monitoring organics

Aqualog® is the only instrument to simultaneously measure both absorbance spectra and fluorescence Excitation-Emission Matrices. EEMs are acquired up to a 100 times faster than with other instruments. Dedicated software automates traceable Quinine Sulfate Unit calibration and correction of inner-filter effects and Rayleigh and Raman scattering lines, enabling rapid export to modeling algorithms like PARAFAC.

Aqualog now offers new deep UV absorbance and fluorescence excitation from 200 nm, in addition to a fully automated sample queue tool to facilitate continuous data acquisition, analysis and export for immediate multivariate analysis with the Solo™ package from our partner, Eigenvector Research, Inc.

ASTM D8431 Standard Test Method for Detection of Water-soluble Petroleum Oils (BTEX) by A-TEEM Optical Spectroscopy and Multivariate Analysis.

   Science in Action Series   Spectroscopy Matters Series

Segment: Scientific
Manufacturing Company: HORIBA Scientific

Featured Videos

Aqualog Water Treatment Plant Analyzer Video

Webinar: Integrated Characterization of Organic Matter for Water Treatment Optimization

A-TEEM™ Molecular Fingerprinting Video

Aqualog Data Stream and Sipper Video

Spectroscopy in :60 - FAST -01 Autosampler

EEM Acquisition Speed Comparison Video

Life in the Arctic with the Aqualog

Life in the Arctic with the Aqualog was created entirely by our customer who wanted to record her experience transitioning from a scanning fluorometer to the Aqualog for water research. She is solely responsible for its content. 

Hardware

  • The only true simultaneous absorbance-fluorescence system available
  • TE-cooled CCD fluorescence emission detector for rapid data acquisition up to 100 times faster than any other benchtop fluorometer
  • Corrected UV-VIS absorbance detection path for stability and accuracy
  • Double grating excitation monochromator for superior stray light rejection
  • Matching bandpass for absorbance and fluorescence spectra
  • Automatic sample changer option (2 or 4 position)
  • Compatible with flow cells and titrator

Software

  • Optimized experiment set-up menus minimize user configuration time
  • Complete NIST-traceable corrected fluorescence spectra automatically generated
  • Spectral and kinetic analysis tools for both absorbance and fluorescence data
  • Methods and batch protocols for automating multiple sample measurement

NEW A-TEEM™ technology

A-TEEM technology uses absorbance, transmittance and EEM data to fingerprint molecules with high specificity and ultrahigh-sensitivity at a 6 million nm/min emission scan rate!

All colored molecules exhibit unique molecular absorbance and transmittance spectra; many colored molecules also exhibit unique fluorescence excitation and emission spectra that can be measured as an excitation-emission matrix (EEM). Simultaneously combining Absorbance–Transmission and EEM is a new technique (A-TEEM) that provides a distinct molecular fingerprint with numerous potential applications.

Aqualog combines an ultrafast CCD that’s up to 4,000 times faster than traditional PMT-based fluorometers, with our new A-TEEM technology so you can easily and effectively identify, quantify and understand individual organic compounds in complex mixtures in minutes. A-TEEM has already proven in many cases to be more effective in protein, vaccine, wine and water research, quality and process applications than HPLC and vibrational spectroscopy.


NEW Aqualog® Datastream Dashboard

Features

  • Seamless integration with Aqualog
  • Convenient HTML-based interface
  • Push-button method operation
  • Simple administrator level controls for calibration and method development


Benefits

  • Easy access through internet or intranet
  • Dashboard shows the latest readings, time series and tables for trends and analysis
  • WTP can upload their own independent data

 

Aqualog Datastream Dashboard is powered by Solo_Predictor software from Eigenvector Research, Incorporated


NEW HORIBA Multi-Model Predictor Tool

HORIBA Instruments is pleased to introduce a new software tool designed to automate multivariate and machine learning analysis workflows for industrial QC/QA applications of HORIBA’s patented Aqualog Absorbance- Transmission fluorescence Excitation Emission Matrix (A-TEEM™) spectrometer.

Key Applications of HMMP Tool

  • Wine and Grape Quality Chemistry (phenolics, anthocyanins, tannins, sulfites etc..)
  • Water Contamination (oil, algae and other materials)
  • Grain mold and odor compounds
  • Cannabinoids
  • Pharmaceuticals (Drugs, Vaccines, Cell Media)
  • Olive Oil adulteration and spoilage
  • Dietary supplement adulteration

 

Key Features and Benefits

  • Easy, Rapid Operator Level Analysis
  • Facilitated Administration of Method Model Development and Editing
  • Complete Parameter Profile and Classification Reports
  • Compatible with Laboratory Information Management Systems
  • HMMP Add-In Fully Integrated into Eigenvector Inc. Solo/Solo+Mia and Exclusively Activated and Supported by HORIBA Instruments Inc.

NEW Automatic Sipper Accessory

New for our Aqualog®  A-TEEM™ spectrometer, the Aqualog automatic sipper accessory handles sampling from a single source, in addition to dispensing rinsing solutions, detergents and controlling reverse-flow drainage The 4-sample changer unitconnects to the main sipper unit to enable sampling of up to 4 sources.

The sipper offers convenient installation and operation, with built-in automatic cleaning, leak detection and protection.  It is fully integrated into the new Aqualog 4.0 software for batch analysis and has a variety of uses in water, pharmaceutical, beverage phenolics and many other applications.

When used at a water treatment plant, the sipper and four channel accessory enable the Aqualog to automatically extract and monitor raw, settled and finished water samples. Each sample changer unit is compatible with overflow and filtration devices, serving up to 4 independent water treatment plant sources.

Fluorescence Hardware

Light source

Extended-UV: 150W vertically mounted xenon arc lamp

Excitation range

200 nm to upper limit of emission detector

Excitation bandpass

5 nm

Excitation monochromator

Subtractive double monochromator

Excitation gratings

1200 gr/mm, 250 nm blaze

Excitation wavelength accuracy

±1 nm

Choice of Detector

Red-extended

Emission range

250-800 nm

Emission grating

285 gr/mm; 350 nm blaze

Hardware pixel binning

0.58, 1.16, 2.32, 4.64 nm/pixel

Emission bandpass

5 nm

Emission spectrograph

Fixed, aberration-corrected 140 mm focal length

Emission detector

TE-cooled back-illuminated CCD

Emission integration time

5 ms minimum

CCD gain options

2.25 e-/cts in high gain, 4.5 e-/cts in medium gain, 9 e-/cts in low gain

Sensitivity

Water-Raman SNR > 20,000:1 (RMS method) (350 nm excitation, 30s integration)

Weight

32.72 kg (72 lbs)

Dimensions

LWH (618 x 435 x 336 mm); (24" x 17" x 13")

 

Absorbance Hardware

Scanning range

200-800 nm (UV lamp)

Bandpass

5 nm

Slew speed

Maximum 500 nm/s
Optical systemCorrected single-beam
DetectorSi photodiode

Wavelength accuracy

+/- 1 nm

Wavelength repeatability

+/- 0.5

Photometric accuracy

+/- 0.01 AU from 0 to 2 AU
Photometric stability<0.002 AU per hour
Photometric repeatability+/- 0.002 AU (0 to 1 AU)

Stray light

<1% measure with Kl standard

Trihalomethane Speciation Modeling in Drinking Water Using the A-TEEM Spectroscopic Technique and Multivariate Data Analysis
Trihalomethane Speciation Modeling in Drinking Water Using the A-TEEM Spectroscopic Technique and Multivariate Data Analysis
This application note describes a rapid, sensitive nondestructive disinfection byproducts (DBP) prediction method using patented simultaneous Absorbance-Transmittance and fluorescence Excitation-Emission Matrix (A-TEEM) spectroscopy.
Harmful Algal Blooms (HABs)
Harmful Algal Blooms (HABs)
This study describes the application of simultaneous absorbance and fluorescence excitation-emission matrix (EEM) analysis for the purpose of identification and classification of freshwater planktonic algal species.
Disinfection Byproducts (DBPs) and Precursors in Drinking Water for EPA Compliance
Disinfection Byproducts (DBPs) and Precursors in Drinking Water for EPA Compliance
This application note describes the use of the Aqualog for monitoring regulated Dissolved Organic Matter (DOM) and disinfection by-product issues for drinking water treatment.
Fast & Non-invasive Determination of Skin State
Fast & Non-invasive Determination of Skin State
Biological tissues contain chromophores that absorb light, as well as fluorophores that absorb and reemit light (fluorescence effect). Light absorption depends on the chromophores’ content and their distribution within the organic matter.
Insulin Structure and Stability Assessment
Insulin Structure and Stability Assessment
Stability and aggregation of insulin are studied using simultaneous fluorescence excitation emission matrices (EEMs) and UV-Vis absorbance spectroscopy [1]. Insulin is a protein-hormone, produced by the pancreas and is necessary for basic metabolic processes. The different types of commercial insulin therapeutics generally fall into two categories: short-acting and long-acting insulin. The difference between some short-acting and long-acting insulin is, in some cases, only one to three residues in the protein sequence.
Noninvasive In-Vivo Determination of Sunscreen-UVA Protection Factors
Noninvasive In-Vivo Determination of Sunscreen-UVA Protection Factors
The development and evaluation of UVA (320–400 nm) sunscreens is important because UVA sunlight can penetrate deep into human skin and cause severe internal damage, as well as erythema and photoaging.
Milk compounds characterization by optical spectroscopies and laser diffraction
Milk compounds characterization by optical spectroscopies and laser diffraction
In the food industry, the compounds characterization is a critical step to ensure the quality of the products or to provide information to customers which can be sensitive to allergies. In this application note, we showed how optical spectroscopies and laser diffraction can help for food compounds characterization, especially on a specific product, i.e. milks.
Spectroscopic Methods for Sunscreens Characterization
Spectroscopic Methods for Sunscreens Characterization
This Application Note outlines three different kinds of spectroscopic tools being used for the characterization of sunscreens, and discusses the obtained results. These include Fluorescence spectroscopy for photoactivity, Particle Size analysis for composition and Raman microscopy for formulation investigation.

Request for Information

Do you have any questions or requests? Use this form to contact our specialists.

* These fields are mandatory.

Product accessories

Aqualog Datastream
Aqualog Datastream

For Instant Water Quality Reports

Fast-01
Fast-01

Aqualog A-TEEM Autosampler Accessory

Solid Sample Tray
Solid Sample Tray

Greater Versatility and User Functionality

Related products

Aqualog - A-TEEM Industrial QC/QA Analyzer
Aqualog - A-TEEM Industrial QC/QA Analyzer

A Simple, Fast, “Column Free” Molecular Fingerprinting Technology

Aqualog - Environmental Water Research Analyzer
Aqualog - Environmental Water Research Analyzer

The Gold Standard for Water CDOM Research

Aqualog Datastream
Aqualog Datastream

For Instant Water Quality Reports

Aqualog Datastream
Aqualog Datastream

For Instant Water Quality Reports

CFD-2G
CFD-2G

Amplifier-Discriminator

DAS6
DAS6

Decay Analysis Software

DeltaDiode
DeltaDiode

TCSPC Pulsed Sources

DeltaFlex
DeltaFlex

TCSPC/MCS Fluorescence Lifetime System

DeltaPro
DeltaPro

TCSPC Lifetime Fluorometer

Duetta
Duetta

Fluorescence and Absorbance Spectrometer

FLIMera
FLIMera

SPAD array imaging camera for dynamic FLIM studies at real time video rates

Fluorolog-QM
Fluorolog-QM

Modular Research Fluorometer for Lifetime and Steady State Measurements

FluoroMax Plus
FluoroMax Plus

Steady State and Lifetime Benchtop Spectrofluorometer

Hybrid Picosecond Photon Detector (HPPD) Series
Hybrid Picosecond Photon Detector (HPPD) Series

HORIBA’s latest development in TCSPC detector technology

Nanosizer
Nanosizer

For Single‐Walled Carbon Nanotube Excitation‐Emission Map Simulation and Analysis

PPD Photon Counting Detector
PPD Photon Counting Detector

Single photons detection with picosecond accuracy

QuantaPhi-2
QuantaPhi-2

PLQY Integrating Sphere

SpectraLED
SpectraLED

LED Phosphorescence Light Sources

Universal Fiber Coupling Solution
Universal Fiber Coupling Solution

Connect any of our steady state and hybrid fluorometers to virtually any upright or inverted microscope!

Water & Liquid Corporate