DeltaFlex

TCSPC Lifetime Fluorometer

High performance and flexible fluorescence lifetime spectrometer for fast and efficient acquisition of TCSPC lifetime data

The DeltaFlex time correlated single photon counting (TCSPC) system is one of our Delta series of next generation time correlated single photon counting lifetime instrumentation. The DeltaFlex offers the ultimate in flexibility.

This system is designed for the measurement of luminescence lifetimes ranging over 11 orders of magnitude, without the need to change cables or cards. The heart of the system is the DeltaHub timing electronics, which offers nearly lossless counting and allows for the measurement of lifetimes from 25ps to 1 second.  Comprised of our high repetition rate sources, high speed detectors and ultra-low deadtime electronics, the DeltaFlex enables fast and efficient acquisition of lifetime data.

Our new F-Link bus brings simplicity to modularity. Simply add any component to the instrument and the system automatically detects the new addition making it accessible from the software.

Finally, with biological probes and applications such as photovoltaics moving further into the NIR, capability for time-resolved measurements in this range is very important.  The DeltaFlex can couple with a range of NIR detectors to offer a solution.  

The DeltaFlex system uses our interchangeable range of DeltaDiode excitation sources, DeltaHub timing electronics and PPD picosecond detection modules.  Add excitation and/or emission monochromators for wavelength selection and complete spectral collection such as TRES. Our TDM-800 monochromator is specifically designed to give low temporal dispersion.  Systems are supplied with a sample holder equipped with a digital temperature sensor and magnetic stirrer.

Accessories include a long list of DeltaDiode and SpectraLED sources, monochromators and peltier temperature control, to name a few.  The DeltaFlex can be easily upgraded to incorporate motorized devices through the F-Link spectrometer bus. 

DeltaFlex-NIR-H optical system shown with H10330 series detector and SpectraLED excitation source.

Segment: Scientific
Manufacturing Company: HORIBA Scientific

Featured Videos

Features

  • Measure lifetimes from 25ps with laser diodes and PPD detection module
  • Up to 1,000 TCSPC measurements per second – ideal for kinetics studies
  • Monochromator wavelength selection  
  • DeltaDiodes available from UV to NIR.  Consult the DeltaDiode page for full details
  • SpectraLEDs can be used to acquire longer lifetimes (µs – s) and available from UV to NIR.
  • Upgrade to a monochromator based NIR system (DeltaFlex-NIR-H or DeltaFlex-NIR-R)
  • Easy to add accessories with F-Link bus
  • Comprehensive software package
  • Measurement modes
    • Lifetime – measure 25ps to 1s
    • Kinetic TCSPC – 1 to 10 000 decays measured sequentially in 1ms to 1min per decay
    • Anisotropy – reconvolution analysis to resolve shorter rotational correlation times
    • Time-Resolved Emission Spectra (TRES) – Collect up to 100 wavelength dependent decays
    • Steady-State

 

Optional Pulsed Laser and LED Light Sources

DeltaFlex system

Minimum Lifetime25ps with laser diode source*
Shortest measurement time1 millisecond*
Repetition rates10kHz - 100MHz with DeltaDiode, 0.1Hz - 10kHz with SpectraLED
Diode controllerDeltaDiode and SpectraLED
Prompt FWHM<200ps FWHM with PPD/TBX and laser diode
Deadtime10ns
Time ranges10ns - 11s
Wavelength selection
  • Emission monochromator as standard 200-800nm.
  • 300-1200nm and 400-1600nm versions optional
  • Excitation and 2nd emission monchromators also available
Detector response
  • 250 - 650nm standard, 250 - 850nm and 300 – 900nm optional. 
  • NIR detectors to 1700nm available
PC interfaceUSB 2.0.  PC not included.  Requires Windows XP or Windows 7, 32/64-bit English language ver
System Footprint75cm x 55cm nominal excluding PC

**With DeltaDiode and PPD attached, no cables

DeltaFlex-NIR upgraded systems

 DeltaFlexDeltaFlex-NIR-HDeltaFlex-NIR-R
Measurable lifetime*25ps to 1s100ps to 1s300ps to 1s
InterfaceUSBUSBUSB
Wavelength coverage of detector
 
250-650nm
(250-850nm or 300-900nm optional)
950-1400nm or
950-1700nm
300-1400nm or 300-1700nm
 

* Dependent on sample and system configuration

Specifications and appearance are subject to change without notice.

Dye‐protein binding monitored in a microliter volume using timeresolved fluorescence
Dye‐protein binding monitored in a microliter volume using timeresolved fluorescence
The potential health benefits stemming from the antioxidant activity of curcumin, commonly found in turmeric (Curcuma longa L), has attracted the interest of several research groups.
Stopped flow time‐resolved fluorescence study of serum albumin – curcuminoid binding
Stopped flow time‐resolved fluorescence study of serum albumin – curcuminoid binding
Rapid mixing accessories to perform stopped flow measurements have found application in characterizing interactions and reactions occurring in solution. Reactants are expelled from syringes, mixed and injected into a flowcell.
Fluorescence Anisotropy Studies
Fluorescence Anisotropy Studies
Polarized light striking a fluorescent molecule results in polarized fluorescence. This polarized emission gradually returns to unpolarized fluorescence depending on rotational diffusion and other factors. Anisotropy is directly related to the polarization, and is the ratio of the polarized light component to the total light intensity.
Measuring PL Upconversion Spectra and Lifetimes of Lanthanide-Doped Nanoparticles
Measuring PL Upconversion Spectra and Lifetimes of Lanthanide-Doped Nanoparticles
Upconverting lanthanide-based nanomaterials exhibit a unique fluorescence anti-Stokes shift, which enables them to convert NIR wavelength excitation into visible shorter wavelength emissions (NIR to UV-Vis).
Characterizing Lanthanides in Glasses for Optical Applications
Characterizing Lanthanides in Glasses for Optical Applications
Glasses are essential materials with a multitude of uses and many forms. In the area of optoelectronics there is an interest to modify the glass composition to favor the incorporation of lanthanide elements.
Upconversion of Lanthanide-containing glasses using DD‐980L excitation
Upconversion of Lanthanide-containing glasses using DD‐980L excitation
The phenomenon of upconversion is an optical process that takes in lower energy (longer wavelength) photons and emits higher energy (shorter wavelength) photons.
Measurement of carrier lifetime in perovskite for solar cell applications
Measurement of carrier lifetime in perovskite for solar cell applications
Hybrid perovskite photovoltaics (PV) show promise because of their good efficiencies, which can be around 20%. Along with their PV characteristics, perovskite materials exhibit a high degree of radiative recombination.
Monitoring Whole Leaf Fluorescence Using Time‐resolved Techniques
Monitoring Whole Leaf Fluorescence Using Time‐resolved Techniques
Light incident on a leaf can be absorbed by chlorophyll to commence the photosynthetic cycle. Excess energy can be liberated as heat or by emission of fluorescence and this can be used to assess the efficiency of the photosynthetic process.
The Measurement of Singlet Oxygen Lifetime Sensitized using Rose Bengal
The Measurement of Singlet Oxygen Lifetime Sensitized using Rose Bengal
The study of singlet oxygen (1O2) is of interest, principally, as it is a highly reactive species. It can be produced by photosensitisation, usually of a molecule such as a dye or porphyrin. Thus, by the appropriate selection of sensitiser, the presence of oxygen and light, 1O2 can be selectively generated. From a biological aspect it has the ability to damage and destroy cells, which has lead to interest in its use as an anticancer agent in photodynamic therapy (PDT).
Effect of temperature on HSA structure inferred using time-resolved room-temperature phosphorescence
Effect of temperature on HSA structure inferred using time-resolved room-temperature phosphorescence
To access intrinsic amino acids, such as tryptophan, as probes, the UV excitation wavelengths for pulsed phosphorescence measurements have long been the preserve of low-repetition-rate gas-filled lamps or larger laser systems. Recent developments have enabled the use of interchangeable semiconductor diodes...
Plasmon enhancement of protein fluorescence by silver nanostructures
Plasmon enhancement of protein fluorescence by silver nanostructures
The use of metal surfaces in conjunction with fluorescence molecules employing a plasmon effect, sometimes referred to as metal enhanced fluorescence, can be advantageous because of the possible enhancement of photophysical properties.
Investigating photocleavage using time‐resolved emission spectra
Investigating photocleavage using time‐resolved emission spectra
The choice of protecting group is of crucial importance in the success of many steps in organic synthesis and the manipulation of polyfunctional molecules, since they can prevent the formation of undesired side products and reactions.
Time‐resolved luminescence of security inks from the UV to NIR
Time‐resolved luminescence of security inks from the UV to NIR
The use of security features, such as luminescent inks, has increased significantly in an attempt to prevent fraud and counterfeiting of materials and goods.
Elucidating Local Viscosity Using Fluorescence Lifetime Measurements
Elucidating Local Viscosity Using Fluorescence Lifetime Measurements
Certain fluorescent molecules, known as molecular rotors, can be employed to estimate the local (nanoscale) viscosity in microheterogeneous systems by measurement of their fluorescence lifetime. This can be advantageous over the usual fluorescence anisotropy method, as the measurement is simpler and faster to perform. This is demonstrated using the HORIBA Scientific TemPro fluorescence lifetime system to monitor the gelation of silica produced using the sol‐gel technique.
MCS and Protein Phosphorescence
MCS and Protein Phosphorescence
Tryptophan phosphorescence within protein molecules is gaining attention as a probe of protein dynamics and structure. The tryptophan phosphorescence lifetime, τ, varies with the protein molecule’s local environment and conformation.

Product Variants

Request for Information

Do you have any questions or requests? Use this form to contact our specialists.

* These fields are mandatory.

Product accessories

Related products

DeltaFlex
DeltaFlex

TCSPC Lifetime Fluorometer

DeltaPro
DeltaPro

TCSPC Lifetime Fluorometer

FluoroMax Plus
FluoroMax Plus

Steady State and Lifetime Benchtop Spectrofluorometer

SpectraLED
SpectraLED

LED Phosphorescence Light Sources

Ultima
Ultima

Ultra Fast TCSPC Lifetime Fluorometer

CFD-2G
CFD-2G

Amplifier-Discriminator

DAS6
DAS6

Decay Analysis Software

DeltaFlex
DeltaFlex

TCSPC Lifetime Fluorometer

DeltaPro
DeltaPro

TCSPC Lifetime Fluorometer

Duetta
Duetta

Fluorescence and Absorbance Spectrometer

Fluorolog-QM
Fluorolog-QM

Modular Research Fluorometer for Lifetime and Steady State Measurements

FluoroMax Plus
FluoroMax Plus

Steady State and Lifetime Benchtop Spectrofluorometer

Hybrid Picosecond Photon Detector (HPPD) Series
Hybrid Picosecond Photon Detector (HPPD) Series

HORIBA’s latest development in TCSPC detector technology

Nanosizer
Nanosizer

For Single‐Walled Carbon Nanotube Excitation‐Emission Map Simulation and Analysis

PPD Photon Counting Detector
PPD Photon Counting Detector

Single photons detection with picosecond accuracy

PrintQuest
PrintQuest

Automated Fingerprint and Palmprint Identification - AFIS & APIS Systems

SpectraLED
SpectraLED

LED Phosphorescence Light Sources

Ultima
Ultima

Ultra Fast TCSPC Lifetime Fluorometer

Aqualog - Water Treatment Plant Analyzer
Aqualog - Water Treatment Plant Analyzer

Automated Organic Analysis & Early Warning Sentinel

Aqualog Datastream
Aqualog Datastream

For Instant Water Quality Reports

CFD-2G
CFD-2G

Amplifier-Discriminator

DAS6
DAS6

Decay Analysis Software

DeltaFlex
DeltaFlex

TCSPC Lifetime Fluorometer

DeltaPro
DeltaPro

TCSPC Lifetime Fluorometer

Duetta
Duetta

Fluorescence and Absorbance Spectrometer

FLIMera
FLIMera

SPAD array imaging camera for dynamic FLIM studies at real time video rates

Fluorolog-QM
Fluorolog-QM

Modular Research Fluorometer for Lifetime and Steady State Measurements

FluoroMax Plus
FluoroMax Plus

Steady State and Lifetime Benchtop Spectrofluorometer

Hybrid Picosecond Photon Detector (HPPD) Series
Hybrid Picosecond Photon Detector (HPPD) Series

HORIBA’s latest development in TCSPC detector technology

LabRAM Odyssey
LabRAM Odyssey

Confocal Raman Imaging & High Resolution Spectrometer

LabRAM Odyssey Semiconductor
LabRAM Odyssey Semiconductor

Photoluminescence and Raman Wafer Imaging

Modular Raman Microscope
Modular Raman Microscope

Flexible Raman System

Nanolog
Nanolog

Steady State and Lifetime Nanotechnology EEM Spectrofluorometer

Nanosizer
Nanosizer

For Single‐Walled Carbon Nanotube Excitation‐Emission Map Simulation and Analysis

PPD Photon Counting Detector
PPD Photon Counting Detector

Single photons detection with picosecond accuracy

QuantaPhi-2
QuantaPhi-2

PLQY Integrating Sphere

SpectraLED
SpectraLED

LED Phosphorescence Light Sources

Ultima
Ultima

Ultra Fast TCSPC Lifetime Fluorometer

Universal Fiber Coupling Solution
Universal Fiber Coupling Solution

Connect any of our steady state and hybrid fluorometers to virtually any upright or inverted microscope!

XploRA™ PLUS
XploRA™ PLUS

Raman Spectrometer - Confocal Raman Microscope

Corporate