LabRAM Soleil

LabRAM Soleil Raman Microscope full view

ラマンイメージング装置

性能とユーザビリティを両立したラマン分光装置!

HORIBA光学技術の中枢のJobin Yvonブランドが 2019年に200周年を迎え、、その技術の結晶として開発されたラマンイメージング装置「LabRAM Soleil」。
この装置名は、200年を超えて光学技術を磨いてきたJobin Yvon社の前身であるMaison Soleil社の創業者であるJean-Baptiste Soleilの名前にちなみ、名づけられました。Maison Soleil社の光学装置は、波動性による回折現象を説明した Auguste-Jean Fresnel をはじめ、数々の著名な物理学者の発明に寄与し、近代の物理学の発展に貢献してきました。

現在では光学装置のコアとなるグレーティングを自社で開発・生産し、数多くの光学装置の性能を支えています。

「LabRAM Soleil」はその想いを引継ぎ、近未来の科学技術の発展に寄与すべく開発されました。多くの新機能の搭載に加え、数々の自動化機構も導入し、 次世代半導体材料である二次元材料や 、昨今ニーズが高まるライフサイエンスの最先端研究から、産業分野での出荷前検査まで、オールラウンドでお使いいただけるラマン分光分析装置になっています。

事業セグメント: 科学
製造会社: HORIBA France SAS
  • さらに進化した高速・高機能共焦点イメージングを実現

SmartSampling™

◉全体像の大枠をいち早く把握するための新アルゴリズムを採用

◉全体像イメージを短時間で取得可能

 

QScan™ 

◉共焦点3Dラマンイメージを迅速に取得可能

◉ステージを動かさずレーザを走査し測定

◉光学像全域のイメージングが可能

多層混合ポリマーの 共焦点3Dラマンイメージ
  • ワークフローの高速化・簡易化を実現


 


  • ワンパッケージ化( < 1 m² )と高い拡張性

◉AFM とのカップリングでTERS 測定を、 また光ファイバプローブを接続することでIn-situ 測定を実現

* TERS: チップ増強ラマン散乱(Tip Enhanced Raman Spectroscopy)


  • ナビゲーションなどの多彩な機能を搭載したソフトウェアLabSpec 6

◉目的に応じた数々の専用機能とナビゲーションなど、直感的なインターフェースで、データ取得・解析の手間を大幅に短縮

EasyImage ナビゲーションツール 測定条件の設定からデータの取得・解析までをナビゲート。
初心者でも容易にイメージング測定ができます。

MVA Plus 多変量解析ツール

処理速度の大幅な向上により、大容量のデータ解析が可能になり、
広範囲で高画質ラマンイメージを取得できます。

 


ParticleFinder™ 粒子解析ツール

光学像から粒子を検出し、検出した粒子を自動測定します。
同時に直径や真円度などの形状解析も行えます。

 


アプリケーション

  • 2D マテリアル

2D マテリアルの分析では、層数や結晶性の評価にラマン・フォトルミネッセンスが用いられています。

高速イメージング機能SmartSampling™により、 短時間でこれらのイメージングデータを得られます

  • 多層ポリマー

多層ポリマーの研究では、 製造中に発生した欠陥や界面状態の観察が重要です。

独自のQScan™技術により、多層ポリマーの三次元情報を、共焦点性を保ちながら広範囲で得られます。

多層ポリマーのラマンイメージ
  • 医薬品錠剤

ラマンイメージングと多変量解析を併用して、医薬品中の有効成分および添加剤の分布をイメージングできます。
8種類の成分を含むタブレットが数分で測定でき、混合物の均一性を評価できます。

▶関連アプリケーションはこちら

レーザ波長標準:532 nm
外付:325 nm
内蔵:405、 473、 532、 638、 785 nm
その他の波長については別途ご相談ください
(内蔵レーザは最大4本まで搭載可)
グレーティング数4枚のグレーティングを搭載可能
(電動切り替え)
1ターレットあたり4枚搭載可能
カットオフ波数30 cm-1 (標準)
10 cm-1 (オプション)
使用するレーザによって異なります
外形寸法 / 装置質量898(W) x 797(D)x 806(H) mm* / 約120 kg*外付レーザを含まず

外形寸法図

Proton Exchange Membrane Fuel Cell Bipolar Plate Analyses by GD-OES and Raman
Proton Exchange Membrane Fuel Cell Bipolar Plate Analyses by GD-OES and Raman
Bipolar plates are key components of proton exchange membrane fuel cells – they notably distribute fuel gas and air and conduct electricity. Various materials and surface treatments have been developed to improve their properties. Here, we described a reverse engineering study on a bipolar plate from a commercial vehicle using GD-OES and Raman spectroscopy. The analyses revealed that the plate had an amorphous carbon coating on a titanium base plate.
Characterization of protective mask fibers by Raman microscopy
Characterization of protective mask fibers by Raman microscopy
Due to Covid-19, a wide choice of protective masks are now on the market. These types of masks are distinguished, in particular, by their different efficiencies linked to their filtration capacity. These differences in protective properties have therefore made it essential to characterize the composition of the masks. In this paper, we present why LabRAM Soleil™ confocal Raman multimode microscope is the perfect tool for studying the distribution and composition of mask fibers.
Optical Micro-spectroscopies on a Path to Identify the Source of Life
Optical Micro-spectroscopies on a Path to Identify the Source of Life
In this article, we present how our Raman and X-Ray Fluorescence microscopies can be combined to shed some light on the origins of the universe. We show some examples on a meteorite piece and on water inclusion in quartz matrix.
Three Dimensional Raman Imaging
Three Dimensional Raman Imaging
Segmented channel waveguides have been fabricated in single crystal KTiOPO4 through a topotactic process of partial cation exchange. The ion-exchanged waveguides maintain the high nonlinear susceptibility of KTiOPO4 to function as frequency doubling laser light sources. We apply three dimensional (3D) Raman imaging to understand and characterize the changes to the chemical bonding and crystalline structure as well as measure the volumetric structure of the waveguide segments.
Pharmaceutical compounds distribution and cosmetic products analyzed by confocal Raman spectroscopy
Pharmaceutical compounds distribution and cosmetic products analyzed by confocal Raman spectroscopy
In the final step of the formulation process, pharmaceutical and cosmetic industries have to control their products to check if the compounds' distribution in the final product, or in its application form, i.e. dispersed on a skin for an intracutaneous product, are homogenous and stable in order to guarantee the product's efficacy. In this paper, we present why confocal Raman microscopy is an excellent tool for product characterization after formulation.
Raman Microscopy Applied to Polymer Characterization: An Overview
Raman Microscopy Applied to Polymer Characterization: An Overview
Raman microscopy is an excellent tool to address the polymer research. Raman microscopy can be used to characterize raw materials, to inline or outline monitor polymerization process, to investigate orientation and crystallization changes, and also to control the quality and traceability of genuine products, by understanding defects and compounds distribution. In this article we present how HORIBA Raman microscopy solutions can support the polymer chemical and structural understanding.
Polymorphisms characterization: when Raman microscopy supports the pharmaceutical industry
Polymorphisms characterization: when Raman microscopy supports the pharmaceutical industry
Polymorphisms characterization of active molecules is one piece of important information for the pharmaceutical industry, not only on raw powders, but also in the final form. Raman microscopy remains the most appropriate solution for this application. In this paper, we present an example of polymorphisms characterization by Raman microscopy using the super low frequency module.
Identification and characterization of aeroallergens based on morphological and chemical features
Identification and characterization of aeroallergens based on morphological and chemical features
The prevalence of allergies in the world is between 30 and 40%. Even though it exists medical treatments such as antihistaminic and desensitization this number is constantly increasing. Thus, in this application note, the identification and chemical characterization of aeroallergens by Raman microscopy will allow to prevent people who are affected by respiratory allergies of the presence of this type of allergens in indoor and outdoor air.
Morphological and chemical characterization of pharmaceutical formulations
Morphological and chemical characterization of pharmaceutical formulations
In order to control formulations of pharmaceutical products, characterizing their active compounds is critical, especially in terms of morphological and chemical characterization of particles. In this application note, two formulations from a generic and an innovator nasal spray have been analyzed to compare their compounds size and shape, and chemically characterized to compare the two formulations based on the ParticleFinderTM app for LabSpec 6. A focus is done on the active compound.
Milk compounds characterization by optical spectroscopies and laser diffraction
Milk compounds characterization by optical spectroscopies and laser diffraction
In the food industry, the compounds characterization is a critical step to ensure the quality of the products or to provide information to customers which can be sensitive to allergies. In this application note, we showed how optical spectroscopies and laser diffraction can help for food compounds characterization, especially on a specific product, i.e. milks.
Morphological and chemical characterizations of microplastic particles using ParticleFinderTM and Raman techniques
Morphological and chemical characterizations of microplastic particles using ParticleFinderTM and Raman techniques
The assessment of microplastics in a marine environment is a multi-step process (sampling, extraction, detection and quantification of microplastics), in which each step is time consuming. Analyzing the chemical composition and morphology of microplastics represents a real challenge for answering crucial questions about the sources and fate of microplastics in aquatic environments. In this application note, we present a reproducible and time-effective method for fast and thorough morphological and chemical characterization of microplastics using a semi-automated scanning of particles coupled to micro-Raman spectroscopy. The rapid analysis of large number of collected particles allows for an exhaustive assessment of both large sample sizes and small subsamples.
Valuable analysis tool for cosmetics and skin characterization
Valuable analysis tool for cosmetics and skin characterization
Confocal Raman Spectroscopy is an important analytical tool in various fields and it has shown high efficiency for specific applications in the cosmetic and/or pharmaceutical fields. Its non-invasive behavior, and its high molecular sensitivity make it one of the preferred label-free analytical techniques to characterize materials such as skin and cosmetic products.
Strain Measurements of a Si Cap Layer Deposited on a SiGe Substrate, Determination of Ge Content
Strain Measurements of a Si Cap Layer Deposited on a SiGe Substrate, Determination of Ge Content
Raman spectroscopy is a very well suited technique to determine both Ge fraction and strain in SiGe layers and Si cap layers. Moreover the possibility of using both UV and visible excitation lines on the same instrument is essential to study structures made up of a Silicon cap layer on top of a SiGe layer. The relative Ge content in the constant Si1-xGex layer is calculated from the visible Raman spectrum and the strain of the cap Si layer is derived from the UV Raman spectrum.
Real-time Monitoring of Polymerisations in Emulsions by Raman Spectroscopy - Modelling and Chemometrics
Real-time Monitoring of Polymerisations in Emulsions by Raman Spectroscopy - Modelling and Chemometrics
Raman spectra, in conjunction with Multivariate (Chemometric) Analysis, have been demonstrated to provide real-time information on the progress of a polymerisation reaction. As shown by this example, these results can provide unexpected information on the details of the reaction. in this case, the inequivalent reaction rates of the two monomers. Such information ultimately enables the process engineer to optimise his process.
Using Chemometrics and Raman Spectra for Quantitative Predictions of Physical and Chemical Properties of Polymers
Using Chemometrics and Raman Spectra for Quantitative Predictions of Physical and Chemical Properties of Polymers
As far as polymeric fibres are concerned, slight modifications of Raman features are directly related to differences in the molecular orientation and the degree of crystallinity of the fibres. To utilize these subtle spectral changes and correlate them with physical properties of the polymer, one is obliged to use Chemometrics on the Raman spectra. The resulting synergism between Raman spectroscopy and Chemometrics will provide a powerful tool for monitoring and control of manufacturing of polymeric materials.
Transmission Raman Spectroscopy: Review of Applications
Transmission Raman Spectroscopy: Review of Applications
The transmission design has demonstrated to be the technique of choice whenever Raman spectral information of a bulk material is required. It has already proven its utility for pharmaceutical applications, as tablets or even powder mixtures are good candidates for this measurement mode. However, transmission Raman might be applied successfully to other sample types, such as polymers, bio-tissues or any translucent material, and can be envisaged for evaluating the content of product inside a package. In addition, as TRS provides a global spectral information of the measured sample, it will be a technique of choice when quantitative evaluation of mixtures is needed.
Raman Imaging of Holographic Gratings Inscribed on Polymer Thin Films
Raman Imaging of Holographic Gratings Inscribed on Polymer Thin Films
Using holographic techniques we have structured the surface in a one step procedure (no wet nor photocuring processing ) along the X and Y directions. A grating is first inscribed with grooves along the X direction, the sample is rotated by 90° and a second grating is inscribed with grooves along the Y direction. The intensity of the 1st diffracted orders is monitored to have equal intensities in both X and Y directions.
Raman Characterization of Polymers in Industrial Applications
Raman Characterization of Polymers in Industrial Applications
Recent developments in Raman instrumentation have made the technique easier to use, more compact, and more affordable. Consequently, all of the demonstrated potential of the spectroscopy for industrial uses can now be exploited, including its use in combination with statistical methods for concentration calibrations.
Localisation of Polymeric Phases by Raman Microscopy Mapping Components of a Blend in a Plane and Depth Profiles of Laminated Film
Localisation of Polymeric Phases by Raman Microscopy Mapping Components of a Blend in a Plane and Depth Profiles of Laminated Film
Blending, an alternative method for engineering products that combines the properties of polymer types is a physical mixing. It has the advantage of being not only simple and inexpensive, but also allows for re-cycling used material. Incompatibility or non-miscibility of the differing chemical components is often an issue in the final performance of the polymer product. The first part of this note concerns the dispersion of the two components in a polyethylene-polybutylene terephthalate blend. The chemical imaging capabilities of the LabRAM are used to get this information. The second part deals with the depth analysis of laminated films made of different polymer layers.
Concentration Profile Measurements in Polymeric Coatings During Drying by Means of Inverse-Micro-Raman-Spectroscopy
Concentration Profile Measurements in Polymeric Coatings During Drying by Means of Inverse-Micro-Raman-Spectroscopy
The coupling of the power of confocal Raman microscopy to the inverted sampling geometry has enabled detailed investigations to be made of solvent and water based coating systems, providing important information on the processes and chemistry that occurs at the coating interface and within.
Observing Oxidating Kinetics on an aluminium alloy surface with Fluorescence mapping
Observing Oxidating Kinetics on an aluminium alloy surface with Fluorescence mapping
Characterization of MoS2 Flakes using TEOS
Characterization of MoS2 Flakes using TEOS
Both TEPL and TERS images are well correlated with AFM morphological images obtained simultaneously, and all are consistent in revealing the nature (number of layers) of MoS2 flakes. Upon deconvolution, the TEPL signal is even capable of revealing local inhomogeneities within a MoS2 flake of 100 nm size. Kelvin probe measurement supports TEPL and TERS measurements and adds to the power of such tip-enhanced combinative tools. TEOS characterization of 2D materials is likely to contribute to further deployment of these materials into commercial products through a better understanding of their electrical and chemical properties at the nanoscale.
Combined Raman and Photoluminescence Imaging of 2D WS2
Combined Raman and Photoluminescence Imaging of 2D WS2
Raman and photoluminescence spectroscopy reveal different aspects of the solid state structure of 2D materials. Raman and photoluminescence imaging performed simultaneously with one instrument reveals the spatial variation of the solid state structure and electronic properties of 2D crystals that is not revealed in reflected white light imaging. That ability should allow materials scientists to better design and fabricate electronic and optoelectronic devices based upon 2D crystals.
Number of Layers of MoS2 Determined Using Raman Spectroscopy
Number of Layers of MoS2 Determined Using Raman Spectroscopy
The two methods - Analysis of fingerprint modes (intralayer) and Analysis of low-frequency modes (interlayer) - give complementary results and allow the determination of the number of MoS2 layers. Method 2 (using low frequency modes) gives excellent contrast; however it does not show single layer regions (which is related to the nature of the modes, rising from interaction between at least two layers). Method 1 (using fingerprint modes) shows all the layers, but the contrast is poorer, particularly for higher numbers of layers. The best result can be obtained combining the two methods. All the measurements (low-frequency and fingerprint) were done using ultra-low frequency ULFTM filters which allow a high throughput measurement in a full Raman range, down to <10 cm-1.
Impact of Raman Spectroscopy on Technologically Important Forms of Elemental Carbon
Impact of Raman Spectroscopy on Technologically Important Forms of Elemental Carbon
The Raman spectra of the various forms of elemental carbon are very sensitive to the type of nearest neighbour bonding, and to intermediate and long range order. In many cases Raman spectroscopy is the technique of choice for characterization of carbon materials. Correlation of Raman spectral features with tribological properties can facilitate the deposition of carbon films.
SWNT Quality Control by Raman Spectroscopy
SWNT Quality Control by Raman Spectroscopy
Raman has shown a high potential in characterising the SWCNTs' structure. The correlation between knowledge about structure with physical and chemical properties about the tubes make the technique extremely powerful to control the quality of the SWCNTs for specific applications. Raman spectrometer capabilities like spatial resolution, spectral resolution and excitation wavelength versatility have been examined. Beside Raman, preliminary fluorescence studies are describing the potential of the technique.
Graphene Studies using Raman Spectroscopy
Graphene Studies using Raman Spectroscopy
Graphene is a new nanomaterial which may partially replace silicon in microcircuits and computer chips in the future. In order to better understand its quality characteristics, fast reliable techniques that deliver the right property measures are needed. Raman spectroscopy has emerged as a key technique for studying this exceptional material.
Derivation of Physical Parameters from Raman Spectra of Hard Carbon Films
Derivation of Physical Parameters from Raman Spectra of Hard Carbon Films
The Raman spectra of elemental carbon materials are known to be sensitive to polymorphy. For hard carbon films, the spectra of amorphous and diamond-like carbons can be band-fit to separate the contributions of the "graphitic carbon" (G band) from the "disordered carbon" (D band). The spectral behaviour of carbon films has been empirically correlated with thin film physical properties such as hardness, durability, optical transparency, electrical conductivity, thermal conductivity and corrosion resistance, and can be of use for prediction of these properties without extensive alternative testing. The DiskRam has been designed to automate the collection of Raman spectra from hard carbon coatings on computer hard disk media and the extraction of parameters that are well correlated with the properties of the films. The extracted information is output in spreadsheet format for SPC at a manufacturing facility.
Coloured Diamond Defect Idenditication by Raman Diffusion and Photoluminescence
Coloured Diamond Defect Idenditication by Raman Diffusion and Photoluminescence
The colour enhancement treatment on native brown and yellow diamonds can be highlighted by Photo Luminescence analyses performed with the Raman spectrometer LabRAM HR. The PL signature of green and violet diamonds has also been recorded. The defect centres responsible of the colour of the diamonds have all been detected and assigned. This proves the Raman spectrometer to be a very good tool to investigate the fine defects in the Diamond structure by Photoluminescence analysis.
Microscopic Measurement of Diffusion
Microscopic Measurement of Diffusion
In order to engineer materials with controlled diffusive properties, we need to be able to measure the diffusive process in situ. Ideally, we would like a technique that provides molecular information with resolution on a microscopic scale, that is non destructive of the samples, and can be set up and used on a laboratory bench top with a minimum of time and effort involved in sample preparation. Raman microprobe spectroscopy is an ideal candidate for this type of studies. Use of visible light combined with a confocal microscope provides a probe with spatial resolution of a micron or better, and coupling of such a microscope to a modern Raman spectrometer equipped with holographic notch filters and CCD multi channel detectors allows rapid acquisition of Raman spectra which can be correlated with the chemical state of the species and its physical environment.
Raman Microscopy in Pharmaceutical Salt Analysis
Raman Microscopy in Pharmaceutical Salt Analysis
Pharmaceutical and crystallographic samples typically require detailed characterization and analysis to optimize a samples stability, physical properties and indeed general efficacy where an active drug substance is involved.
Investigating the atherosclerosis process by monitoring lipid deposits including cholesterol and free fatty acids
Investigating the atherosclerosis process by monitoring lipid deposits including cholesterol and free fatty acids
In Vivo Raman measurements of Human Skin
In Vivo Raman measurements of Human Skin
Confocal Raman spectroscopy is beginning to be recognized as a high potential technique for the non invasive study of biological tissues and human skin under in vivo conditions. Raman spectroscopy can be applied to obtain information regarding the molecular composition of the skin down to several hundred micrometers below the skin surface.
Characterization and mapping of active pharmaceutical ingredients and excipients in a tablet using Raman and IR spectroscopy
Characterization and mapping of active pharmaceutical ingredients and excipients in a tablet using Raman and IR spectroscopy
Raman Analysis of Sperm Nuclear DNA Integrity
Raman Analysis of Sperm Nuclear DNA Integrity
Raman Spectroscopy was evaluated as a non-invasive method of analysis of sperm DNA and the influence of UV irradiation on the sperm. The results show that Raman Spectroscopy, combined with multivariate analysis provide the reproducible and accurate information on DNA of sperm and the effect and location of damage.
Raman Imaging of monkey brain tissue
Raman Imaging of monkey brain tissue
Fast and non-invasive methods for clinical and non clinical investigations for biological tissue are more and more required. Raman imaging at micro scale can answer to crucial questions about the monkey brain tissue morphology and structural evolution.
Raman Investigation of Micro-organisms on a single cell level
Raman Investigation of Micro-organisms on a single cell level
Raman Analysis of Single Bacteria Cells
Raman Analysis of Single Bacteria Cells
Traditionally, Raman has been a technique of the material scientist, physicist or chemist, but as instrumentation continues to evolve, the power of Raman in biological and medical applications is fast being realized, not least because of the high information content provided and an excellent tolerance for water.
Insights into thrombosis mechanisms using high resolution SERS
Insights into thrombosis mechanisms using high resolution SERS
Raman Spectroscopy Applied to the Lithium-ion Battery Analysis
Raman Spectroscopy Applied to the Lithium-ion Battery Analysis
The application note explains how the Raman Spectroscopy can be helpful in the analysis of cathodes and anodes in Li-ion batteries. Today’s state of art of technology requires more reliable, more efficient and powerful energy sources. Lithium-ion batteries are thus of high interest. Raman spectroscopy adapts to the different stages of life of these batteries, such as the characterization of new materials for more flexible systems, failure analysis; but also more standard analysis of used material during charge/discharge process, including structural and electronic properties, and even robust, automated QC tests.

お問い合わせ

* 項目は必ずご記入ください。

HORIBAグループ企業情報