HORIBA
  • Products
    • Automotive
    • Medical
    • Process and Environmental
    • Scientific
    • Semiconductor
    • Water & Liquid
    • All Products (A-Z)
    • By Industry
      • Arts, Entertainment and Recreation
        • Art Conservation
        • Museums, Historical Sites and Similar Institutions
      • Education, R&D and Government Institutions
        • Universities
        • Research and Testing Laboratories
      • Energy and Environment
        • Battery
        • Coal and Consumable Fuels
        • Electric Utilities
        • Energy Fuel Oil
        • Environmental Countermeasures
        • Oil and Gas
        • Petroleum and Coal Products Manufacturing
      • Food and Beverage
        • Beverages
        • Food
        • Cosmetics
      • Health Care
        • Biotechnology
        • HORIBA In Vitro Diagnostic solutions for human health care
        • Life Sciences
        • Pharmaceuticals and Medicine Manufacturing
      • Industrials
        • Building Products
        • Commercial and Professional Services
        • Electrical Equipment
        • Machinery
      • Information Technology
        • Semiconductor Manufacturing Process
      • Materials
        • Chemicals
        • Chemical Manufacturing
        • Containers and Packaging
        • Nonferrous Metals
        • Nonmetallic Minerals
        • Paper, Forest Products and Manufacturing
        • Plastics and Rubber
        • Primary Metals
      • Mobility and Transportation
        • Automobiles and Components
        • Automotive Manufacturing
        • Other Transportation Equipment Manufacturing
      • Waste Management
        • Solid Waste Management and Remediation Services
        • Water Waste Management and Remediation Services
      • Water
    • By Technique
      • Atomic Spectroscopy
        • Energy Dispersive X-ray Fluorescence (ED-XRF)
        • Glow Discharge Optical Emission Spectrometry (GD-OES)
        • Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES)
        • Inorganic Elemental Analysis
        • Beta-ray Absorption Analyzer
      • Electrochemistry
        • Potentiometry based on Ion-Selective Electrode (ISE)
      • Life Science Techniques
        • Label-free Detection / Surface Plasmon Resonance Imaging (SPRi)
      • Mass Spectrometry
        • Plasma Profiling Time-Of-Flight Mass Spectrometry (PP-TOFMS)
        • Quadrupole Mass Spectrometry
      • Material Characterization
        • Colorimetry
        • Condensation Particle Counter (CPC)
        • Dynamic Light Scattering (DLS) Particle Size Distribution Analysis
        • Magneto-pneumatic Analysis
        • Mechanical Flowmetry
        • Pressure-based Mass Flowmetry
        • Spectroscopic Ellipsometry
        • Static Light Scattering (SLS) / Laser Diffraction Particle Size Distribution Analysis
        • Fluid Measurement and Control
      • Molecular Spectroscopy
        • Absorption and Transmission Spectroscopy (UV, Visible, NIR)
        • Cathodoluminescence (CL, CLUE)
        • Chemiluminescence
        • Fluorescence Spectroscopy
        • Fourier-Transform Infrared Spectroscopy (FTIR)
        • Non-Dispersive Infrared Spectroscopy (NDIR)
        • Non-Dispersive Ultra Violet Spectroscopy (NDUV)
        • Photoluminescence (PL) & Electroluminescence (EL)
        • Quantum Cascade Laser (QCL) Spectroscopy
        • Raman Imaging and Spectroscopy
        • Vacuum Ultra Violet Spectroscopy
      • Radioactivity
        • Crystal Scintillation
      • Surface Science Techniques
        • Plasma Profiling Time-Of-Flight Mass Spectrometry (PP-TOFMS)
        • AFM-Raman (co-localized measurements & TERS)
  • Applications
    • Arts, Entertainment and Recreation
      • Art Conservation
      • Museums, Historical Sites and Similar Institutions
    • Education, R&D and Government Institutions
      • Universities
      • Research and Testing Laboratories
    • Energy and Environment
      • Coal and Consumable Fuels
      • Electric Utilities
      • Energy Fuel Oil
        • Wear metals and additive Elements Analysis.
      • Environmental Countermeasures
      • Petroleum and Coal Products Manufacturing
        • Petrochemicals
      • Photovoltaics
      • Oil and Gas
      • RoHS and ELV
    • Food and Beverage
      • Agriculture & Crop Science
      • Research & Development
      • Beverages
      • Food
      • Food & Beverage Manufacturing
    • Health Care
      • Biochemistry
      • Biotechnology
        • High Throughput Screening of Affimer Proteins using SPRi Label-Free Technology
        • Analytical Chemistry
      • Human Health Care
      • Life Sciences
        • Cell Biology
        • Blood Testing
        • Proteomics
        • Microbiology
        • Structural Biology
        • Genomics
        • Bioengineering
        • Nanoscience
        • Personal Care
      • Pharmaceuticals and Medicine Manufacturing
        • Cosmetics
        • Drug Discovery and Development
        • Drug Delivery
        • Counterfeit
        • Quality Assurance
        • Vacuum Monitoring in Dryer Equipment for Freeze Dry in Pharmaceuticals and Medicine Manufacturing
        • Bioprocessing
        • Analytical Chemistry
    • Industrials
      • Battery
      • Commercial and Professional Services
        • Gas mass flow control and measurement for reference value of PM2.5 measurement
      • Construction & Engineering
      • Electrical Equipment
      • Machinery
    • Information Technology
      • Semiconductors
        • 2D Materials
        • Graphene
        • Photovoltaics
        • Determination of Perovskite Optical Constants
        • Display Technologies
        • Data Storage
        • Nanomaterials
      • Semiconductor Manufacturing Process
      • Technology Hardware and Equipment
    • Materials
      • Ceramics
      • Chemicals
        • Fertilizers, phyo-sanitary
        • Polymers & Plastics
        • Analytical Chemistry
      • Chemical Manufacturing
      • Construction Materials
      • Containers and Packaging
        • Quality control in the aluminium packaging industry
      • Metal Powder
      • Nonferrous Metals
      • Nonmetallic Minerals
        • Glass
        • Coatings
      • Paper, Forest Products and Manufacturing
      • Plastics and Rubber
      • Primary Metals
      • Material Research
        • Corrosion
        • 2D Materials
        • Quantum Dots
        • Carbon based Materials - Graphene
        • Nanomaterials
      • Photovoltaics
      • Forensics
      • Metal and Mining
        • Gemstones
    • Mobility and Transportation
      • Automotive Manufacturing
      • Engine, Turbine and Power Transmission Equipment Manufacturing
      • Real Driving Emissions
      • RDE Plus
    • Waste Management
      • Solid Waste Management and Remediation Services
      • Water Waste Management and Remediation Services
        • Repeatability of Traces and Major Elements in Water
        • Very Rapid Analysis of Supply Water, Sludge From Purification Station and Animal Food
        • Waste Water and Soil Analysis
        • Waste Water Treatment and Disposal
    • Water
  • Technology
    • Measurement and Control Techniques
      • Electrochemistry
        • The Story of pH
        • The Basis of pH
        • Measurement of pH
        • The Story of Ion
        • The Basis of Ion
        • Measurement of Ion
        • The Story of ORP
        • The Basis of ORP
        • Measurement of ORP
        • The Story of Conductivity
        • The Basis of Conductivity
        • Measurement of Conductivity
        • The Story of Salt
        • The Story of Dissolved Oxygen
        • The Basis of DO Measurement
        • LAQUA Electrode Technology
      • Elemental Analysis
        • X-ray Fluorescence Spectroscopy (XRF)
        • Glow Discharge Optical Emission Spectroscopy
        • Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES)
        • Carbon/Sulfur & Oxygen/Nitrogen/Hydrogen Analysis
      • Health Care
        • Multi Distribution Sampling System (MDSS)
        • Reticulocytes Analysis
        • CBC + CRP
        • Slide Production
        • Automatic Rerun
        • Absorbance
        • Fluorescence
        • Flow cytometry
        • Impedance / Resistivity
        • Sedimentation
        • Spectrophotometry
        • Potentiometry
        • INR screening
        • Clotting
        • Turbidimetric
        • Chromogenic
      • Light Scattering
        • Dynamic Light Scattering (DLS) Particle Size Distribution Analysis
        • Molecular Weight
        • Raman Scattering
        • Static Light Scattering (SLS) / Laser Diffraction Particle Size Distribution Analysis
        • Zeta Potential
      • Fluid Control
        • Thermal Mass Flowmetry
      • Mass Spectrometry
        • Quadrupole Mass Spectrometry
      • Microscopy and Imaging
        • AFM-Raman
        • Atomic Force Microscopy [AFM]
        • Cathodoluminescence
        • Image Analysis of Particles
        • Micro-X-ray Fluorescence
      • Physisorption
        • Surface Area
      • Spectroscopy
        • Cathodoluminescence Spectroscopy
        • AFM-Raman
        • Detectors
        • 50 years of Diffraction Gratings
        • Diffraction Gratings Ruled and Holographic
        • Fluorescence Spectroscopy
        • Raman Spectroscopy
        • Spectrometers, Monochromators and Spectrographs
        • Spectroscopic Ellipsometry
        • Vacuum Ultra Violet Spectroscopy
        • X-ray Fluorescence
      • Surface Plasmon Resonance
        • Surface Plasmon Resonance Imaging (SPRi)
  • Service
    • Analysis Services
      • Analysis Centers and Services
      • EMC Analysis Service
    • Calibration and Certification
      • Calibration Centers
    • Customer Support
      • HORIBA Medical Documentation Database
      • Medical Customer Support
      • On-Site Support
      • Software Upgrades
      • STARS Helpdesk
    • Maintenance
      • Dynamometer and Other Overhaul Services
      • Periodic Maintenance
    • Spare Parts and Consumables
    • Testing and Consulting
      • Testing Centers
    • Training
      • Product Training
        • Scientific Product Training
        • Automotive Product Training
        • Medical Product Training
      • Technology Training
        • Raman Training
        • Glow Discharge Training
        • Fluorescence Training
        • Ellipsometry Training
        • SPRi Training
        • Inductively Coupled Plasma Training
        • Inductively Coupled Plasma Training (USA)
        • PSA Training
        • Carbon, Sulfur, Oxygen, Nitrogen and Hydrogen Analyzers Training (USA)
        • Online-OnSite Training
  • Company
    • About HORIBA
      • Message
      • Company Profile
        • Board of Directors
        • Corporate Officers
      • Culture
        • Corporate Philosophy
      • History
        • 1945–1960s
        • 1970s
        • 1980s
        • 1990s
        • 2000s
        • 2010s
      • Technical Journal "Readout"
        • Masao Horiba Awards Research Articles
        • Readout No. E54 - Microplastics and Nanoplastics: Analysis and Method Development
        • Readout No. E53 - 2019 Masao Horiba Awards - Advanced Analytical and Measurement Technologies for Efficient Control System to Maximize the Performance of Electric Power and Batteries Usage
        • Readout No. E52 - Green Innovation for Marine Shipping Industry
        • Readout No. E51 - 2018 Masao Horiba Awards Advanced analytical and measurement technologies in semiconductor manufacturing processes
        • Readout No. E50 - Low-Carbon Society and Environmental Improvement
        • Readout No. E49 - Photonic Instrumentation in Life Science
        • Readout No. E48 - Water Measurement Experts
        • Readout No. E47 - Application for Semiconductor Manufacturing Process
        • Readout No. E46 - New Development for Automotive Test Systems
        • Readout No. E45 - Application Technology in Analysis
        • Readout No. E44 - Contribution of Diagnostics to Total Medical Care/Healthcare
        • Readout No. E43 - Watching the Environmental and Society with Measurements
        • Readout No. E42 - More Efficient Testing on Automotive Development, Improving the Accuracy of Fuel Consumption Measurement
        • Readout No. E41 - Application
        • Readout No. E40 - Application
        • Readout No. E18 - EUROPE
        • Readout No. E17 - AMERICA
        • Readout No. E16 - Chinese (Asia)
        • Readout No. E15 - Technologies for HORIBA STEC
        • Readout No. E14 - Masao HORIBA Awards"Measurement of Bioparticles" and "Measurement of Internal Combustion"
        • Readout No. E13 - Technologies for Automotive Testing
        • Readout No. E12 - Masao Horiba Awards "X-ray Analysis Technology"
        • Readout No. E11 - The Second Masao Horiba Awards
        • Readout No. E10 - Environmental Analysis Technologies for the Management of Global Environment and the Development of Industry
        • Readout No. E09 - The First Dr.Masao Horiba's Award and the 50th Anniversary Products
        • Readout No. E08 - Products and Technologies of HORIBA ABX
        • Readout No. E07 - Products and Technologies of Jobin Yvon HORIBA Group
        • Readout No. E06 - 50th Anniversary of HORIBA, Ltd. Products and Technology of HORIBA Group
        • Readout No. E05 - Semiconductor Instruments
        • Readout No. E04 - Hematology Instruments
        • Readout No. E03 - Paticulate Matter
        • Readout No. E02 - The Technolgy Alliance for X-ray Analysis
        • Readout No. E01 - the Analysis of the Global Environment
      • Virtual Patent Marking
    • Events
    • Career
    • Investor Relations
      • Home
      • Investor Relations News
      • Management Policies
        • Message from the CEO
        • Mid-Long Term Management Plan
        • Corporate Governance
        • Corporate Culture "Joy and Fun"
        • Corporate Philosophy
      • IR Library
        • Financial Statements
        • Presentation Materials
        • HORIBA Report
        • Financial Information
      • Stock Information
        • Basic Stock Information
      • Investor Relations Contact
      • Other IR Information
        • Investor Relations Calendar
        • Disclaimer
    • News
    • Social Responsibility
      • Home
      • Message
      • HORIBA's CSR
        • CSR Policy, CSR Promotion System
        • UN Global Compact
        • HORIBA and the SDGs
      • Environment
        • Policy
        • Environmental Activities
        • Eco-Friendly Products
        • Actions for RoHS Directive, REACH Regulation and GHS Regulations
      • Social
        • Home
        • Integrated Management System
        • Quality
        • Occupational safety and health
        • Promotion of Diversity
        • Material Procurement
        • Social Activities
      • Governance
        • Corporate Governance
        • Code of Ethics
        • Internal Controls
        • Compliance Promotion Systems
        • Risk Management
      • HORIBA Special Contents
      • Library
      • HORIBA Group Social Media
        • Social Media Registered Accounts
        • HORIBA Group Social Media Policy
        • HORIBA Group Terms of Use for Social Media
      • Integrated Report
    • Group Companies
      • Americas
        • Brazil
        • Canada
        • United States
      • Asia
        • China
        • India
        • Indonesia
        • Japan
        • Korea
        • Philippines
        • Singapore
        • Taiwan
        • Thailand
        • Vietnam
      • Europe
        • Austria
        • Belgium
        • Czech Republic
        • France
        • Germany
        • Italy
        • Netherlands
        • Poland
        • Portugal
        • Romania
        • Russia
        • Sweden
        • Turkey
        • United Kingdom
  • Contact
    • Contact Form
    • Worldwide Locations

Spectroscopy Matters open open
  • Spectroscopy an Emerging Method to Achieve Clean Water
  • Spectroscopy Used to Find Life in Hidden Environments
  • What You Need to Know About Carbon Nanodots
  • Photoluminescence Spectroscopy Uncovers Photovoltaic Properties
  • Semiconductor Characterization Depends on Photoluminescence
  • Nutraceutical Fraud
  • Fluorescence Spectroscopy Used by Winemakers
  • Policing “Organic Milk” with Fluorescence Spectroscopy
  • Better and Safer Food Through Spectroscopy
  • Fluorescence Spectroscopy Identifies Phenolic Content Of Healthy Olive Oils
  • This is The Future of Cancer Treatment
  • Fluorescence spectroscopy helps combat coastal erosion
  • Raman Spectroscopy Uncovers Origins of Life in Ancient Samples
  • Raman Spectroscopy Used to Fight Crime
  • Raman and IR Spectroscopy Identifies Counterfeit Drugs
  • Raman spectroscopy helps create petroleum products from renewable sources
  • Unraveling how minerals fight toxic waste using Raman spectroscopy
  • Investigators Use EDXRF Spectroscopy to Identify Duct Tape
  • Detecting Lead in Drinking Water
  • Your Diet Depends on Near-Infrared Spectroscopy
  • HORIBA
    • Products
    • Applications
    • Technology
    • Service
    • Company
    • Contact
    Products
    • Process and Environmental
    • Scientific
    • Semiconductor
    • All HORIBA Products from A-Z
    • By Industry
    • By Technique
    Scientific
    Spectroscopy Matters
    • Spectroscopy an Emerging Method to Achieve Clean Water
    • Spectroscopy Used to Find Life in Hidden Environments
    • What You Need to Know About Carbon Nanodots
    • Photoluminescence Spectroscopy Uncovers Photovoltaic Properties
    • Semiconductor Characterization Depends on Photoluminescence
    • Nutraceutical Fraud
    • Fluorescence Spectroscopy Used by Winemakers
    • Policing “Organic Milk” with Fluorescence Spectroscopy
    • Better and Safer Food Through Spectroscopy
    • Fluorescence Spectroscopy Identifies Phenolic Content Of Healthy Olive Oils
    • This is The Future of Cancer Treatment
    • Fluorescence spectroscopy helps combat coastal erosion
    • Raman Spectroscopy Uncovers Origins of Life in Ancient Samples
    • Raman Spectroscopy Used to Fight Crime
    • Raman and IR Spectroscopy Identifies Counterfeit Drugs
    • Raman spectroscopy helps create petroleum products from renewable sources
    • Unraveling how minerals fight toxic waste using Raman spectroscopy
    • Investigators Use EDXRF Spectroscopy to Identify Duct Tape
    • Detecting Lead in Drinking Water
    • Your Diet Depends on Near-Infrared Spectroscopy
    Raman Spectroscopy Used to Fight Crime

Raman Spectroscopy Used to Fight Crime

 

There’s a breakthrough underway in law enforcement that can have a deep impact on crime-solving efforts.

Cutting edge spectroscopy applications are beginning to make inroads into crime scene substance identification. Researchers are exploring how these complex spectroscopy methods can be used in law enforcement activities.

Biological stains are one area crime fighters focus on. These can be used to identify persons of interest.

Biological stains include blood, saliva, semen, vaginal fluid, sweat and urine. Body fluid traces are important because they are the main source of DNA evidence. Currently, police use various biochemical tests to detect and identify body fluids.

But those tests are destructive – they alter the sample. The tests are also presumptive, and generate many false positives.

Raman spectroscopy and ATR FTIR (Attenuated total reflectance Fourier-transform infrared spectroscopy) are vibrational technologies that are more sensitive and can more accurately identify body fluids.

Researchers are using Raman technology as the first method to develop a universal, confirmatory test of body fluids. Raman is also a non-destructive technique and does not affect the sample as it’s tested.

Raman is being used in research to develop a non-destructive fingerprint of the chemical makeup of a substance. Automated software is also being developed to identify all the main body fluid traces for samples on a noninterfering aluminum foil substrate.

One hitch is examining samples that are on common substrates like carpets, floors, tiles, or whatever you find at the crime scene. Software is under development to detect dry body fluids on these substrates, as to make identification without touching the biological sample.

The next challenge is to transfer this technology from a desktop instrument to a handheld instrument that travels to the crime scene. Like a portable, handheld Raman instrument, for example. Prototypes are being tested in the lab now. The challenge is to develop methodology and make it economical to law enforcement agencies.

The upfront costs of such an instrument would be mitigated by the less expensive use of consumables, as is used now in biochemical tests. The portable Raman spectrometer could also be used by law enforcement to identify illicit drugs.

One researcher is working on phenotype profiling and can determine the sex, race and age of the donor based on a biological stain. This helps investigators build a profile of the suspect, a critical step in solving crimes. The technique is not ready for field use yet.

Gunshot reside can also be examined using Raman spectroscopy to identify the caliber of the weapon used in a discharge. Investigators can also use Raman to match the residue found on a victim or perpetrator with a sample of the gunshot residue in a test.

Raman spectroscopy can detect and characterize organic and inorganic particles, helping to overcome the identification of lead-free ammunition, a new trend in our greener world. This ammunition typically defies traditional testing methods. Raman spectroscopy is looking for molecular composition. Raman picks up molecules’ chemical structures, overcoming the limitations of traditional testing methods.

The ultimate goal is to develop black box-type instruments that can go out in the field and make these substance identifications. That goal is between three and five years down the road.

The Federal Bureau of Investigation uses Energy Dispersive X-Ray Spectroscopy (EDS or EDX) technology, like that made by HORIBA, in its analytical arsenal.  The FBI built a large library of duct tape data for crime scene analysis using the technology.

An EDS analyzer is suited for qualitative and quantitative foreign material and composition analysis. The technique detects X-rays emitted from the sample during bombardment by an electron beam to characterize the elemental composition of the analyzed volume.

Crime scene investigators use ultra-violet and infrared fluorescence techniques in conjunction with lasers for identifying fingerprints. They also use fluorescence for document analysis, mainly in characterizing inks, and to identify drugs, glass, petroleum products and biological samples.

Investigators even use fluorescence spectroscopy to identify saliva stains on various objects.

REQUEST FOR INFORMATION

Do you have any questions or requests? Use this form to contact our specialists.

  • Products
    • By Products (A-Z)
    • Automotive
    • Medical
    • Process and Environment
    • Scientific
    • Semiconductor
  • Applications
    • Automotive Manufacturing
    • Semiconductor Manufacturing Process
    • Research and Testing Laboratories
  • Technology
    • Glow Discharge Spectroscopy
    • Pressure-based Flowmetry
    • Quadrupole Mass Spectrometry
    • Raman Spectroscopy
  • Service
    • On-Site Support
    • Spare Parts and Consumables
  • Company
    • News
    • Events
    • Career
    • History
    • Corporate Culture
  • Contact
    • Contact Form
    • Worldwide Locations

Terms and Conditions Privacy Notice Cookies Imprint