What is Nanomaterials?

Nanomaterials is a major field of advance material research. Over the last three decades, nanomaterials, especially, polymer and silicon based materials, have experienced tremendous rise in interest due to the extraordinary ability to manipulate their structure and composition at the atom level, leading to the development of novel materials with unique properties that were not available before. Today, nanomaterials are used over a wide range of applications including automotive, semiconductors, energy storage and biomedical, to name just few examples.

HORIBA offers a large choice of innovative technologies such as Surface Enhanced Raman Spectroscopy [SERS], steady state and lifetime fluorescence, photoluminescence, ellipsometry and particle size analysis to support a wide range of nanomaterials applications.

Browse Applications

Experimental Assessment of Metal Nanostructures as Effective SERS Substrates
Research in nanoscience has garnered much interest because of the different properties of small structures compared to the respective bulk material.
Photoluminescence of InGaAs/GaAs Quantum Dots
InGaAs/GaAs and InAs/GaAs quantum dots (QDs) have been identified as suitable candidates for various applications in the terahertz range by using their intraband carrier transitions.
The NanoLog Series: A New Generation of Performance
The NanoLog has a reputation as the premier instrument for the exploration of single-walled carbon nanotubes (SWCNTs).
Measuring Silica Nanoparticles via Fluorescence Anisotropy
Silica is currently one of the most important industrial materials, whose nanoparticles are formed via a sol-gel process.
Measuring PL Upconversion Spectra and Lifetimes of Lanthanide-Doped Nanoparticles
Upconverting lanthanide-based nanomaterials exhibit a unique fluorescence anti-Stokes shift, which enables them to convert NIR wavelength excitation into visible shorter wavelength emissions (NIR to UV-Vis).
Ellipsometric Characterization and Modeling of Different Types of Nanoparticles
AFM picture of composite layer of Gold nanoparticles into PVA matrix. The picture illustrates typical surface topography of such samples.
UVISEL ellipsometers have been used for the characterization of several systems of nanoparticles. This ellipsometric characterization involves the development of specific modeling tools available within DeltaPsi2 software. Through this report we illustrate the application of ellipsometry to the characterization of nanoparticle based samples. Our goal is to demonstrate that the technique can apply within a large panel of materials science. The HORIBA ellipsometric product line offers the most versatile hardware of the UVISEL series combined with the DeltaPsi2 software including unique modeling features to get the most of your applied work on this fascinating domain of modern physics.
Nanophotonics with Fluorescence Instruments
HORIBA Jobin Yvon’s spectrofluorometers have many applications in nanophotonics research: single-walled carbon nanotubes (SWNTs), quantum dots (QDs), and organic light-emitting diodes (OLEDs). Quantum confinement affects nanomaterials’ photoluminescence: when the semiconducting nanoparticle is smaller than the bulk material’s Bohrexciton radius, the bandgap energy is inversely proportional to the nanoparticle size.
Near-IR System for Nanophotonics
Nanophotonics is one of the most exciting new fields to come out of nanotechnology. The quantum-confinement effects observed in these very small (~10 nm) particles can lead to unique optical properties.
Raman Imaging of a Single Gallium Nitride Nanowire: Pushing the Limits of Confocal Microscopy
Mapping of the nanowire performed by recording step-spectra at every 200 nm with an integration time of 1s.
We have performed a complete Raman polarized study of a single GaN nanowire using a confocal microscope together with a high resolution stage. The high spatial resolution of our Raman confocal instrument together with a piezoelectric stage demonstrates unambiguously the possibility to image the optical properties of nano-objects with a resolution better than 200 nm keeping the fill advantage of the polarization control under a confocal microscope.
Low Temperature Macro Photoluminescence and PLE System
The FluoroLog-3® system makes an ideal turnkey macro PL / PLE system. The large format sample chamber allows the easy installation of a standard helium cryostat for low temperature studies.
Better Data on Carbon Nanotubes with the NanoLog
Improvements to the HORIBA Scientific NanoLog®, already the best spectrofluorometer for exploration of single-walled carbon nanotubes (SWCNTs), render it even more suitable for this application.
Ellipsometric modeling of NanoParticles
Pulsed RF GDOES for the analysis of films containing metal and metal oxide nanoparticles
Photoluminescence Spectroscopy of Quantum Dots
Photoluminescence Spectroscopy of Quantum Dots
Quantum dots (QDs) have potential applications in optoelectronics, biosensing, biolabeling, memory devices, and sources of laser light.
Near-IR Photoluminescence of Quantum Dots
HORIBA Jobin Yvon’s NanoLog® spectrofluorometer, specially optimized for recording near-IR fluorescence from nanoparticles, includes a double-grating excitation monochromator, imaging emission spectrograph with a selectable-grating turret, and a variety of detectors.
Better Signal-to-Noise Ratios for Carbon Nanotube Spectra
Better Signal-to-Noise Ratios for Carbon Nanotube Spectra
Corrected emission spectra1 of carbon nanoparticles can provide excitation–emission matrices (EEMs) for a range of excitation wavelengths.
Fluorescence Spectra from Carbon Nanotubes with the NanoLog
Fluorescence Spectra from Carbon Nanotubes
Single-wall carbon nanotubes (SWNTs), consisting of rolled-up single sheets of carbon atoms, have received much attention recently.


Do you have any questions or requests? Use this form to contact our specialists.