HORIBA
Search English
Global
  • Products
    • Mobility
    • Energy and Environment
    • Industrial Process and Environment
    • Life Science
    • Healthcare
    • Materials
    • Semiconductor
    • Scientific and Analytical Instruments
    • Water & Liquid
    • All products from A to Z
  • Applications
    • Arts, Entertainment and Recreation
      • Art Conservation
      • Museums, Historical Sites and Similar Institutions
    • Biopharma and Pharma
    • Cosmetics
    • Education, R&D and Government Institutions
      • Universities
      • Research and Testing Laboratories
    • Energy Solutions
      • Why HORIBA
      • Hydrogen Energy
        • Global Initiatives
        • Global Trends and Strategies toward Carbon Neutrality
        • Fuel Cell Evaluation
        • FCEV / FCV Evaluation
        • Stationary Fuel Cells
        • Evaluation of Hydrogen and Ammonia Engine / Gas Turbine for Power Generation
        • Hydrogen Station Evaluation
        • Water Electrolysis Evaluation
        • Hydrogen Production Evaluation
      • Energy Usage Optimization
        • Energy Management System
        • Environmental Impact Assessment (LCA and GHG Protocol)
        • Battery Manufacturing/Recycling
      • CO2 Capture and Carbon Resource Circulation
        • Reduce
        • Direct Carbon Capture
        • Carbon Resource Circulation
      • Coal and Consumable Fuels
      • Electric Utilities
      • Energy Fuel Oil
      • Environmental Countermeasures
      • Petroleum and Coal Products Manufacturing
        • Petrochemicals
      • Photovoltaics
      • Oil and Gas
      • RoHS and ELV
    • Food and Beverage
      • Agriculture & Crop Science
      • Beverages
      • Food
      • Food & Beverage Manufacturing
    • Healthcare
    • Industrials
      • Battery
      • Commercial and Professional Services
        • Gas mass flow control and measurement for reference value of PM2.5 measurement
      • Construction & Engineering
      • Electrical Equipment
      • Machinery
    • Information Technology
      • Semiconductors
        • 2D Materials
        • Graphene
        • Photovoltaics
        • Display Technologies
        • Data Storage
        • Nanomaterials
      • Semiconductor Manufacturing Process
      • Technology Hardware and Equipment
    • Life Science
      • Biopharma and Pharma
        • Drug Development and Formulation
        • Process Development and Quality
        • PAT Solutions
        • Small Molecule Drugs
        • Protein Analysis
        • Cell Culture Media
        • New Modality
        • Microbial Testing
        • Low Molecular Drugs
      • Biotechnology and Biomedical
      • Cosmetics
      • Food and Beverage
    • Materials
      • Carbon
      • Polymers and Composites
      • Raw Materials for Semiconductors
      • Metals
      • Minerals
      • Corrosion
      • Ceramics
      • Glass
      • Chemicals
      • Chemical Manufacturing
      • Construction Materials
      • Containers and Packaging
      • Paper, Forest Products and Manufacturing
      • Material Research
      • Photovoltaics
      • Forensics
    • Mobility and Transportation
      • Automotive Manufacturing
      • Engine, Turbine and Power Transmission Equipment Manufacturing
      • Real Driving Emissions
      • Intelligent Lab
      • Marine
    • Waste Management
      • Solid Waste Management and Remediation Services
      • Water Waste Management and Remediation Services
        • Waste Water and Soil Analysis
        • Waste Water Treatment and Disposal
      • Plastic Waste
    • Water
      • Drinking Water Utilities
      • Water Reuse
        • Water Testing
  • Technology
    • Elemental Analysis
      • Energy Dispersive X-ray Fluorescence (ED-XRF)
        • What is X-ray Fluorescence (XRF)?
        • What is X-ray Fluorescence Spectroscopy (micro-XRF)?
        • XRF Key Components
        • XRF Analysis
        • XRF Articles
        • HORIBA XRF Analyzers
      • Glow Discharge Optical Emission Spectroscopy
        • Glow Discharge Optical Emission Spectroscopy
        • Sample Measurement with GDOES
        • Sample Test and Analysis
        • Comparison with Other Techniques: Surface Analysis
        • Comparison with Other Techniques: Bulk Analysis
        • Instrument Introduction
        • Benefits and Features of Pulsed RF GDOES
        • Join the GD Community
        • Bibliography
      • Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES)
        • Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES)
        • Scientific ICP Spectrometers
        • Applications for ICP-OES
        • ICP-OES and other techniques
        • Principles and Theory
        • Instrumentation
        • Excitation Source
        • Dispersive System
        • Detection Systems Used with ICP-OES
        • Performances in ICP-OES
      • Carbon/Sulfur & Oxygen/Nitrogen/Hydrogen Analysis
    • Health Care
      • Multi Distribution Sampling System (MDSS)
      • Reticulocytes Analysis
      • CBC + CRP
      • Slide Production
      • Automatic Rerun
      • Absorbance
      • Fluorescence
      • Flow cytometry
      • Impedance / Resistivity
      • Sedimentation
      • Spectrophotometry
      • Potentiometry
      • INR screening
      • Clotting
      • Turbidimetric
      • Chromogenic
    • Particle Analysis
      • Dynamic Light Scattering (DLS) Particle Size Distribution Analysis
      • Molecular Weight
      • Nanoparticle Tracking Analysis
      • Static Light Scattering (SLS) / Laser Diffraction Particle Size Distribution Analysis
      • Zeta Potential
      • Centrifugal Sedimentation
    • Fluid Control
      • Vaporization of Critical Process Chemistries
      • Coriolis Flowmetry
      • Thermal Mass Flowmetry
    • Mass Spectrometry
      • Quadrupole Mass Spectrometry
    • Microscopy and Imaging
      • AFM-Raman
        • AFM-Raman
        • What is Tip Enhanced Raman Spectroscopy?
        • What information does TERS provide?
        • How does enhancement of the Raman signal occur in TERS?
        • What are the TERS instrumental configurations?
        • What are the TERS tips materials and morphology?
        • What kind of substrates can be probed with TERS?
        • What is the SPM feedback used for TERS?
        • What is the spatial resolution of TERS?
        • What is the definition of TERS Enhancement factor?
        • What is nonlinear TERS?
        • What are the degradation issues and artifacts in TERS?
        • What are the main TERS applications in Materials Sciences?
        • What are the main Life Sciences TERS applications?
        • References
        • Products
      • Atomic Force Microscopy [AFM]
      • Cathodoluminescence
      • Image Analysis of Particles
      • Micro X-ray Fluorescence
      • Raman Microscopy
    • Physisorption
      • Surface Area
    • Spectroscopy
      • Cathodoluminescence Spectroscopy
        • Cathodoluminescence Spectroscopy
        • Electron Microscope
        • SEM, ESEM, SEM-FIB, (S)TEM
        • EM Add-on detector
        • SEM-Cathodoluminescence (SEM-CL)
      • AFM-Raman
      • Detectors
        • Detectors
        • What is a CCD Detector?
        • What is an EMCCD Detector?
        • How to Select a CCD Camera for Spectroscopic Applications
        • Wavelength and Pixel Position
        • Spectroscopy Detector Products
        • Scientific CCD Camera Products
      • 50 years of Diffraction Gratings
      • Diffraction Gratings Ruled and Holographic
      • Fluorescence Spectroscopy
        • Fluorescence Spectroscopy
        • Principles and Theory of Fluorescence Spectroscopy
        • What is the Jablonski Diagram?
        • What is a Fluorescence Measurement?
        • Steady State Fluorescence Techniques
        • What is Fluorescence Anisotropy or Fluorescence Polarization?
        • What are Luminescence Quantum Yields?
        • What is Ratiometric Fluorescence?
        • What is an Excitation Emission Matrix (EEM)?
        • What is A-TEEM spectroscopy?
        • What is Singlet Oxygen?
        • How to Calculate Signal to Noise Ratio
        • Fluorescence Lifetime Techniques
        • Products Using Fluorescence Spectroscopy
      • Quantum Cascade Laser (QCL) Spectroscopy
        • Optical Hardware
        • Concentration Calculation Algorithm
        • Application Fields
      • Raman Imaging and Spectroscopy
        • Raman Spectroscopy
        • History of Raman Spectroscopy
        • Application field
        • Comparison with other techniques
        • Raman analysis
        • Recording spectral images and profiles
        • Description: Combined/hybrid/hyphenated Raman system
        • Confocal Raman microscopy
        • Raman Spectrometer Presentation
        • How the technique is used
        • Raman Image Gallery
        • Related Products
      • Spectrometers and Monochromators
        • Monochromator System Optics
        • Bandpass and Resolution
        • Order, Resolution, and Dispersion
        • Choosing a Monochromator/ Spectrograph
        • Spectrometer Throughput and Etendue
        • Optical Signal to Noise Ratio and Stray Light
        • Entrance Optics
        • Spectrometer, Spectrograph and Monochromator Products
      • Spectroscopic Ellipsometry
        • Spectroscopic Ellipsometry
        • Advantages
        • Instrumentation
        • Measurement Techniques
        • Data Analysis
        • Cauchy dispersion module
        • Products
      • Vacuum Ultra Violet Spectroscopy
        • Vacuum Ultra Violet Spectroscopy
        • VUV technology
        • High Vacuum (HV), Ultra High Vacuum (UHV), gas purge
        • Light sources in VUV
        • VUV system: Detector
        • Aberration
        • References - Articles
      • X-ray Fluorescence
    • Surface Plasmon Resonance
      • Surface Plasmon Resonance imaging
        • Surface Plasmon Resonance Imaging (SPRi)
        • Brief History of the Technique
        • SPR Measurements, Application Field and Comparison with Other Techniques
        • The Basics of Label-free Biomolecular Interactions
        • Instrument Presentation
        • How SPRi is Used
        • Key Accessories. Sensorchips. Surface Chemistry
        • How are the Molecules Immobilized on the biochip?
        • Conclusion & Bibliography
  • Service
    • Analysis Services
      • Analysis Centers and Services
      • EMC Analysis Service
    • Calibration and Certification
      • Calibration Centers
    • Customer Support
      • HORIBA Medical Documentation Database
      • Medical Customer Support
      • On-Site Support
      • Software Upgrades
      • STARS Helpdesk
    • Maintenance & Repairs
      • Overhauling and Maintenance for Asynchronous Motors
      • Calibration Services for Measuring Equipment
      • Repair Services for SPARC Test Bench Controllers
      • Periodic Maintenance
    • Spare Parts and Consumables
    • Testing and Consulting
      • Automotive Testing Centers
    • Training
      • Product Training
        • Scientific Product Training
        • Automotive Product Training
        • Medical Product Training
      • Technology Training
  • Company
    • About HORIBA
      • Home
      • Message
      • Company Profile
      • Corporate Motto and Philosophy
      • Code of Ethics
      • Our Future (Vision, Mission, Values)
      • Corporate Governance
      • Board of Directors
      • Culture
      • History
        • 1945–1960s
        • 1970s
        • 1980s
        • 1990s
        • 2000s
        • 2010s
        • 2020s
      • HORIBA Report
      • Technical Journal "Readout"
        • Readout No. E58 - Analysis and Measurement Technologies that Contribute to the Development of Next Generation Semiconductor Devices
        • Readout No. E57 - HORIBA’s Initiatives in the Next-Generation Energy and Environment Fields
        • Readout No. E56 - Analytical Solutions in Megatrends
        • Readout No. E55 - 2021 Masao Horiba Awards - Spectroscopic analysis and measurement technology in the life science field
        • Readout No. E54 - Microplastics and Nanoplastics: Analysis and Method Development
        • Masao Horiba Awards Research Articles
        • Readout No. E53 - 2019 Masao Horiba Awards - Advanced Analytical and Measurement Technologies for Efficient Control System to Maximize the Performance of Electric Power and Batteries Usage
        • Readout No. E52 - Green Innovation for Marine Shipping Industry
        • Readout No. E51 - 2018 Masao Horiba Awards Advanced analytical and measurement technologies in semiconductor manufacturing processes
        • Readout No. E50 - Low-Carbon Society and Environmental Improvement
        • Readout No. E49 - Photonic Instrumentation in Life Science
        • Readout No. E48 - Water Measurement Experts
        • Readout No. E47 - Application for Semiconductor Manufacturing Process
        • Readout No. E46 - New Development for Automotive Test Systems
        • Readout No. E45 - Application Technology in Analysis
        • Readout No. E44 - Contribution of Diagnostics to Total Medical Care/Healthcare
        • Readout No. E43 - Watching the Environmental and Society with Measurements
        • Readout No. E42 - More Efficient Testing on Automotive Development, Improving the Accuracy of Fuel Consumption Measurement
        • Readout No. E41 - Application
        • Readout No. E40 - Application
        • Readout No. E18 - EUROPE
        • Readout No. E17 - AMERICA
        • Readout No. E16 - Chinese (Asia)
        • Readout No. E15 - Technologies for HORIBA STEC
        • Readout No. E14 - Masao HORIBA Awards"Measurement of Bioparticles" and "Measurement of Internal Combustion"
        • Readout No. E13 - Technologies for Automotive Testing
        • Readout No. E12 - Masao Horiba Awards "X-ray Analysis Technology"
        • Readout No. E11 - The Second Masao Horiba Awards
        • Readout No. E10 - Environmental Analysis Technologies for the Management of Global Environment and the Development of Industry
        • Readout No. E09 - The First Dr.Masao Horiba's Award and the 50th Anniversary Products
        • Readout No. E08 - Products and Technologies of HORIBA ABX
        • Readout No. E07 - Products and Technologies of Jobin Yvon HORIBA Group
        • Readout No. E06 - 50th Anniversary of HORIBA, Ltd. Products and Technology of HORIBA Group
        • Readout No. E05 - Semiconductor Instruments
        • Readout No. E04 - Hematology Instruments
        • Readout No. E03 - Paticulate Matter
        • Readout No. E02 - The Technology Alliance for X-ray Analysis
        • Readout No. E01 - the Analysis of the Global Environment
      • Group Companies
      • Virtual Patent Marking
      • HORIBA Talk
    • Events
    • Career
    • Investor Relations
      • Home
      • Investor Relations News
      • IR Library
        • Financial Statements
        • Presentation Materials
        • HORIBA Report
      • Message from the CEO
      • Mid-Long Term Management Plan
      • Stock Information
      • Shareholders Meeting
      • Other IR Information
        • Investor Relations Calendar
        • Disclaimer
      • Investor Relations Contact
    • News
    • Sustainability
      • Sustainability
      • Message
      • Sustainable Management
        • Policy and Promotion System
        • Integrated Management System
        • Health and Productivity
        • UN Global Compact
      • Environment
        • Environment
        • Climate Action
        • Reduction of Environmental Impact
        • Actions for RoHS Directive, REACH Regulation and GHS Regulations
        • Eco-Friendly Products
      • Social
        • Social
        • Quality
        • Occupational safety and health
        • Diversity, Equity & Inclusion
        • Material Procurement
        • Social Activities
      • Governance
        • Governance
        • Corporate Governance
        • Internal Controls
        • Compliance Promotion Systems
        • Code of Ethics
        • Risk Management
      • HORIBA and the SDGs
      • HORIBA Report
  • Contact
    • Contact Form
    • Worldwide Locations
Support for Sports open open
  • Archer Yuki Hayashi, Legal Affairs Department played in the 2016 Rio de Janeiro Olympics!
    Company » Sustainability » Social » Social Activities » Support for Sports » Archer Yuki Hayashi, Legal Affairs Department played in the 2016 Rio de Janeiro Olympics! 

Archer Yuki Hayashi, Legal Affairs Department played in the 2016 Rio de Janeiro Olympics!

Yuki Hayashi, Legal Affairs Department of HORIBA, Ltd. participated in the 2016 Rio de Janeiro Olympics , as a member of the Japanese archery team in the team and individual competitions.
It was her second Olympics participation after the first challenge at the 2008 Beijing Olympics. Japanese archery woman’s team was rated in a top 8 ranking as a result. 

Yuki Hayashi’s profile


≪Special Interview≫

(As of July 2016)

She spoke about the path she has followed and her enthusiasm for the Rio Olympics.

Participating in an Olympics for the second time — a dream realized after eight years of devotion to archery

— At the 2008 Beijing Olympics, you won eighth prize in the team competition, which is the highest the Japanese women’s archery team had ever ranked. As your second time in an Olympics approaches, has your attitude toward the event changed in any way compared to eight years ago?

At the Beijing Olympics, many colleagues came to the venue to support me, and I remember their great encouragement. The Olympic Games is larger in scale than any other competition, and its tense atmosphere is very special. I was chosen as an Olympic athlete in November 2007, soon after my career in HORIBA began, and during the subsequent eight months until the Olympics, training camps and competitions in Japan and abroad continued, the days passing at a dizzying speed.

As an Olympic athlete representing Japan, I felt pressure at all times. After I was chosen, I always taxed my strength in practice and games, and when the Beijing Olympics started I had not been able to relax myself mentally or physically. I forced myself to think that I always had to be No. 1 because I had been chosen to compete in the Olympics.

Compared to that time, today, having set a goal of achieving a satisfactory result at the Olympics, I think about what I should concentrate my energies on in each training camp and away competition. I am not taxing my strength at all times, so in the good sense, I am now able to control myself so that I am not overeager to win.

Comeback from a setback — encountering field archery

— You once thought of giving up archery after you missed the berth for the London Olympics, we hear. In the past seven years, during which time things did not always go well, what led you to decide to try competing in an Olympics again?

It is true that I felt no longer able to join the Olympics because I had missed the London Olympics. The turning point was that I was tempted by an organizer of a field archery tournament held in Kyoto in 2011 who said, “I will give you a lunch box for free if you help us to organize the tournament” (laughs), so I participated in the event not as an athlete but as an assistant in its operation.

I attached targets boards and served as a public-address announcer for the competition (laughs). Then, the players who knew me came to me and asked, “Why are you just watching? You should play in the competition!” I was not so willing to do, but I was half-forced to apply in the upcoming competition, which is how I came to do field archery, and surprisingly, as a result I became able to compete in the national field archery tournament. Since then, I decided to give vent to my frustration of being unable to compete in the London Olympics by concentrating on this national field archery tournament. From that time, I started to practice field archery truly in earnest.

World Archery Field Championships in 2012

World Archery Field Championships in 2012

Unlike ‘target archery’, ‘field archery’ made me think about many factors such as differences in ground level and distances to targets. This allowed me to see archery with a new frame of mind. It was also fun to climb the mountain with a lunch box in order to practice field archery there (laughs).

At the national field archery tournament, I ranked first in the preliminaries, qualifying for the final round, and thus acquired the right to take part in the World Archery Field Championships. From then on, I further concentrated on my practice and climbed the mountain almost every day. I do not think I have ever practiced so desperately as I did then. So I challenged myself at the World Archery Field Championships in 2012 and ranked seventh in the individual competition. This was my first time to win a prize at the world championships in the individual competition, which led me to think that I could win a prize if I worked enough hard and gained confidence in myself.

The shot determined the participation in the Rio Olympics, at the 2015 World Archery Championships

The shot determined the participation in the Rio Olympics, at the 2015 World Archery Championships

I enjoyed the competitions themselves very much and made friends with athletes from other countries. As we mutually praised our strenuous efforts, I felt from the bottom of my heart how wonderful archery was. From then on, I gradually regained my form, became able to enjoy archery, and increasingly felt that I should do my best to participate in an Olympics again. As I was chosen as a member of the Japanese team for one international competition after another and achieved satisfactory results, the ambition for the Rio Olympics increased.

— You have taken part in many international competitions and achieved satisfactory results.
What do you consider to be important when competing at the highest level in the world?

At her office, Legal Affairs Department

At her office, Legal Affairs Department

When I enter an international competition, all the athletes appear more skillful. The most important thing at such moments is not to compare myself with other athletes but instead to believe in what I have done at practice. This is all I need to do. Demonstrating properly all that I have done in practice will always bring results. If things do not go well, that means I lacked something. I have also become able to analyze causes and control my mood for the next competition.

In the team competition, under Mr. Nobukane Tanaka, Coach of the Japanese women’s team, the three athletes, myself included, consider it to be important to maintain an atmosphere of enjoying the competition with a smile. Coach Tanaka’s guidance has enabled us to display our abilities in global competitions; enjoying the competitions, displaying our abilities by switching our mood clearly between office hours and archery time. This idea shares something in common with HORIBA’s motto “Joy and Fun. ”

As for the Beijing Olympics, my goal was simply to participate in the event, but at the Rio Olympics, my goal is to win medals in both the individual and team competitions.

  • Products
    • All Products (A-Z)
    • Mobility
    • Energy and Environment
    • Life Science
    • Healthcare
    • Materials
    • Semiconductor
  • Applications
    • Drinking Water Utilities
    • Automotive Manufacturing
    • Semiconductor Manufacturing Process
    • Research and Testing Laboratories
  • Technology
    • Glow Discharge Spectroscopy
    • Pressure-based Flowmetry
    • Quadrupole Mass Spectrometry
    • Raman Spectroscopy
  • Service
    • On-Site Support
    • Spare Parts and Consumables
  • Company
    • News
    • Events
    • Career
    • History
    • Corporate Culture
  • Contact
    • Career Contact
    • Contact Form
    • Worldwide Locations
    • Investor Relations Contact

Terms and Conditions Privacy Notice Cookies HORIBA Group Social Media