LabRAM Nano

LabRAM HR Evo Nano

AFM-Raman for physical and chemical imaging

Fully integrated system based on SmartSPM state of the art scanning probe microscope and LabRAM HR Evolution fully automated Raman micro-spectrometer. LabRAM HR Nano offers full automation and versatile compatibility with outstanding performance.

The LabRAM HR Evo Nano brings ease-of-use and extreme flexibility together for the most demanding applications. With capabilities from deep UV to infrared, high spectral resolution, and an extended set of options and accessories, the HR Evo Nano is ideally suited to perform in any of your research challenge.

Segment: Scientific
Division: Molecular and Microanalysis
Manufacturing Company: HORIBA France SAS

Multi-sample analysis platform

Macro, micro and nano scale measurements can be performed on the same platform.

Ease-of-use

Fully automated operation, start measuring within minutes, not hours!

True confocality

High spatial resolution, automated mapping stages, full microscope visualization options.

High collection efficiency

Top-down and oblique Raman detection for optimum resolution and throughput in both

co-localized and Tip-Enhanced measurements (Raman and Photoluminescence).

High spectral resolution

Ultimate spectral resolution performance, multiple gratings with automated switching, wide spectral range analysis for Raman and PL.

High spatial resolution

Nanoscale spectroscopic resolution (down to 10 nm) through Tip Enhanced

Optical Spectroscopies (Raman and PhotoLuminescence).

Multi-technique / Multi-environment

Numerous SPM modes including AFM, conductive and electrical modes (cAFM,

KPFM), STM, liquid cell and electrochemical environment, together with chemical mapping

through TERS/TEPL. Full control of the 2 instruments through one workstation and a powerful software control, SPM and spectrometer can be operated simultaneously or independently

Robustness / Stability

High resonance frequency AFM scanners, operation far away from noises! High

performance is obtained without active vibration isolation.

 

 

SmartSPM Scanner and Base

Sample scanning range: 100 µm x 100 µm x 15 µm (±10 %)

Scanning type by sample: XY non-linearity 0.05 %; Z non-linearity 0.05 %

Noise: 0.1 nm RMS in XY dimension in 200 Hz bandwidth with capacitance sensors on; 0.02 nm RMS in XY dimension in 100 Hz bandwidth with capacitance sensors off; < 0.04 nm RMS Z capacitance sensor in 1000 Hz bandwidth

Resonance frequency: XY: 7 kHz (unloaded); Z: 15 kHz (unloaded)

X, Y, Z movement: Digital closed loop control for X, Y, Z axes; Motorized Z approach range 18 mm

Sample size: Maximum 40 x 50 mm, 15 mm thickness

Sample positioning: Motorized sample positioning range 5 x 5 mm

Positioning resolution: 1 µm

AFM Head

Laser wavelength: 1300 nm, non-interfering with spectroscopic detector

Registration system noise: Down to < 0.1 nm

Alignment: Fully automated cantilever and photodiode alignment

Probe access: Free access to the probe for additional external manipulators and probes

SPM Measuring Modes

Contact AFM in air/(liquid optional); Semicontact AFM in air/(liquid optional); Non -contact AFM; Phase imaging; Lateral Force Microscopy (LFM); Force Modulation; Conductive AFM (optional); Magnetic Force Microscopy (MFM); Kelvin Probe (Surface Potential Microscopy, SKM, KPFM); Capacitance and Electric Force Microscopy (EFM); Force curve measurement; Piezo Response Force Microscopy (PFM); Nanolithography; Nanomanipulation; STM (optional); Photocurrent Mapping (optional); Volt-ampere characteristic measurements (optional)

Spectroscopy Modes

Confocal Raman, Fluorescence and Photoluminescence imaging and spectroscopy

Tip-Enhanced Raman Spectroscopy (TERS) in AFM, STM, and shear force modes

Tip-EnhancedPhotoluminescence (TEPL)

Near-field Optical Scanning Microscopy and Spectroscopy (NSOM/SNOM)

Conductive AFM Unit (optional)

Current range:  100 fA ÷ 10 µA; 3 current ranges (1 nA, 100 nA and 10 µA) switchable from the software

Optical Access

Capability to use simultaneously top and side plan apochromat objective: Up to 100x, NA = 0.7 from top or side; Up to 20x and 100x simultaneously

Closed loop piezo objective scanner for ultra stable long term spectroscopic laser alignment: Range 20 µm x 20 µm x 15 µm; Resolution: 1 nm

Spectrometer

Fully automated high resolution LabRAM HR Evolution micro-spectrometers,functional as stand-alone micro-Raman microscope

Wavelength range: 50 cm-1 to 4000 cm-1 or down to 10 cm-1 with Ultra Low Frequency (ULF) filter option

Gratings: Selection of gratings from 150 g/mm to 3600 g/mm; 2 gratings on computer controlled turret, kinematically mounted and easily exchangeable

Optical design: Achromatic spectrograph and achromatic coupling optics

Automation: Fully motorized, software controlled operation

Detection

Full range of CCD detectors and EMCCDs and InfraRed detectors: InGaAs array, single channel extended InGaAs, InSb, CdTe,...

Laser Sources

Wavelengths: Full range of wavelengths from DUV (229 nm) to IR (up to 2.2 µm)

Typical wavelength: 532 nm, 638 nm, 785 nm

Automation: Fully automated laser and filter switching for up to 3 simultaneous lasers; Laser polarization selection and spectral analyzer options for all wavelengths

Software

Integrated software package including full featured SPM, spectrometer and data acquisition control, spectroscopic and SPM data analysis and processing suite, including spectral fitting, deconvolution and filtering, optional modules include univariate and multivariate analysis suite (PCA, MCR, HCA, DCA), particle detection and spectral search functionalities.

Characterization of Carbon Nanotubes Using Tip-Enhanced Raman Spectroscopy (TERS)
Characterization of Carbon Nanotubes Using Tip-Enhanced Raman Spectroscopy (TERS)
The use of TERS to reveal the defects density in the structure of CNTs is of interest for a better understanding of the electrical properties of the devices made with such nano-objects. Not only defects concentration but also local chirality changes from the different radial breathing modes, pressure effect and strain distribution can be studied at the single carbon nanotube level through TERS.
Characterization of MoS2 Flakes using TEOS
Characterization of MoS2 Flakes using TEOS
Both TEPL and TERS images are well correlated with AFM morphological images obtained simultaneously, and all are consistent in revealing the nature (number of layers) of MoS2 flakes. Upon deconvolution, the TEPL signal is even capable of revealing local inhomogeneities within a MoS2 flake of 100 nm size. Kelvin probe measurement supports TEPL and TERS measurements and adds to the power of such tip-enhanced combinative tools. TEOS characterization of 2D materials is likely to contribute to further deployment of these materials into commercial products through a better understanding of their electrical and chemical properties at the nanoscale.
Characterization of Graphene using TERS
Characterization of Graphene using TERS

Request for Information

Do you have any questions or requests? Use this form to contact our specialists. * These fields are mandatory.

Product accessories

TERS Probes
More TERS Probes

Reliable, efficient TERS probes for AFM-Raman imaging

Related products

LabRAM HR Evolution
More LabRAM HR Evolution

Confocal Raman Microscope

LabRAM Odyssey
More LabRAM Odyssey

Best-in-class Raman Imaging & High Resolution Spectrometer

XploRA Nano
More XploRA Nano

AFM-Raman for Physical and Chemical imaging

XploRA™ PLUS
More XploRA™ PLUS

Raman Spectrometer - Confocal Raman Microscope

Auto SE Accessories
More Auto SE Accessories

Customize your instrument

Auto Soft
More Auto Soft

Intuitive Auto-Soft Interface for the Auto SE and Smart SE

Customize with VBS
More Customize with VBS

Scripts and ActiveX

DeltaPsi2 Software
More DeltaPsi2 Software

A Platform for HORIBA Scientific Ellipsometers

GD-Profiler 2™
More GD-Profiler 2™

Discover a Whole New World of Information with Glow Discharge Optical Emission Spectrometer

Gratings - OEM Diffraction Grating
More Gratings - OEM Diffraction Grating

OEM gratings design and production capabilities

Instant Processing
More Instant Processing

On-the-fly custom data processing

LabRAM HR Evolution
More LabRAM HR Evolution

Confocal Raman Microscope

LabSpec 6: Validated performance
More LabSpec 6: Validated performance

LabSpec 6 is a validated software

Multivariate Analysis
More Multivariate Analysis

Data analysis for complex data sets

OneClick
More OneClick

Fast and easy Raman acquisition

OpenPleX
More OpenPleX

Manual label-free molecular interaction analysis machine Flexible Research Platform

PP-TOFMS Software
More PP-TOFMS Software

Ergonomic software for data acquisition, data treatment and technical support

Spectral Database Searching
More Spectral Database Searching

1750 Raman spectra available

Spectroscopic Ellipsometer - Large area mapping Ellipsometers
More Spectroscopic Ellipsometer - Large area mapping Ellipsometers

For Flat Panel Display and Photovoltaic Industries

Template and Methods
More Template and Methods

Recall settings, and automate processes

User Accounts
More User Accounts

Password protected user access control

UVISEL 2
More UVISEL 2

Spectroscopic Ellipsometer

UVISEL Plus In-Situ
More UVISEL Plus In-Situ

In-situ spectroscopic ellipsometer for real-time thin film monitoring

XGT-7200
More XGT-7200

X-ray Analytical Microscope

XGT-9000
More XGT-9000

X-ray Analytical Microscope

XploRA Nano
More XploRA Nano

AFM-Raman for Physical and Chemical imaging

XploRA™ PLUS
More XploRA™ PLUS

Raman Spectrometer - Confocal Raman Microscope

LabRAM Odyssey
More LabRAM Odyssey

Best-in-class Raman Imaging & High Resolution Spectrometer

XploRA Nano
More XploRA Nano

AFM-Raman for Physical and Chemical imaging