HORIBA
Search English
China
  • 产品
    • 汽车
    • 过程与环境
    • 医疗
    • 半导体
    • 科学仪器
    • 水与液体
    • 全部产品
  • 应用
    • 艺术品/博物馆
      • 文物保护
      • 博物馆、历史遗址和类似机构
    • Biopharma and Pharma
    • Cosmetics
    • 教育、研发及政府机构
      • 研究所及分析测试中心
    • 能源与环境
      • 为什么选择HORIBA
      • 氢能
        • 全球合作
        • 全球碳中和趋势与战略
        • 燃料电池性能评估
        • FCV燃料电池车评估
        • 固定式燃料电池
        • 火力发电中氢/氨燃料发动机、燃气轮机的测量与评估
        • 加氢站
        • 电解水
        • 氢气制造
      • 优化能源利用
        • 能源管理系统 (EMS)
        • 环境影响评估(生命周期评估和温室气体核算体系)
        • 电池制造/回收
      • 碳捕集和利用
        • 减少二氧化碳排放
        • 直接碳捕集
        • 碳回收
      • 煤炭和消耗性燃料
      • 电气设施
      • 能源燃油
      • 环境评估
      • 石油和煤炭产品制造业
        • 石油化工
      • 光伏
      • 石油和天然气
      • RoHS和 ELV
    • 食品和饮料
      • 农业
      • 饮料
      • 食品
      • 食品 / 饮料生产
    • 医疗诊断
    • 工业
      • 电池
      • 商业及专业服务
        • 气体质量流量控制与测量和对PM2.5参考值的测量
      • 建筑与工程
      • 电气设备
      • 机械
    • 信息科学
      • 半导体
        • 二维材料
        • 石墨烯
        • 光伏
        • 显示技术
        • 数据存储
        • 纳米材料
      • 半导体制程
      • 信息设备
    • Life Science
      • Biopharma and Pharma
        • Drug Development and Formulation
        • Process Development and Quality
        • PAT Solutions
        • Small Molecule Drugs
        • Protein Analysis
        • Cell Culture Media
        • New Modality
        • Microbial Testing
        • Low Molecular Drugs
      • Biotechnology and Biomedical
      • Cosmetics
      • Food and Beverage
    • 材料
      • Carbon
      • Polymers and Composites
      • Raw Materials for Semiconductors
      • Metals
      • Minerals
      • Corrosion
      • 陶瓷
      • 玻璃
      • 化学
      • 化工生产
      • 建筑材料
      • 包装材料
      • 纸,林业制品
      • 材料研究
      • 光伏
      • 法庭科学
    • 交通出行及运输
      • 汽车制造
      • 发动机、涡轮机和动力传动设备制造
      • 实际驾驶排放
      • Intelligent Lab
      • Marine
    • 废物管理
      • 固体废物燃烧、管理
      • 废水管理和修复服务
        • 废水和土壤分析
        • 废水处理
      • Plastic Waste
    • 水质
      • 饮用水处理监测
      • 水循环
        • 水质检测
  • 技术
    • 元素分析
      • 电感耦合等离子体发射光谱仪 (ICP-OES)
        • 电感耦合等离子体发射光谱仪 (ICP-OES)
        • HORIBA ICP 等离子体发射光谱仪
        • ICP-OES 的主要应用领域有哪些?
        • ICP-OES 与其他技术的区别
        • 原则和理论
        • 仪器组成及原理
        • 激发源
        • 色散系统
        • ICP-OES 的检测系统
        • ICP-OES 的性能
      • 碳/硫和氧/氮/氢分析
    • 体外诊断技术
      • MDSS微量分血技术
      • 网织红细胞分析技术
      • CRP
      • 全自动推染片系统
      • 结果管理
      • 吸光度
      • 荧光分析技术
      • 流式细胞术
      • 阻抗法
      • 沉降作用
      • 分光光度法
      • 电位分析法
      • 体外诊断技术
      • 凝固法
      • 免疫比浊法
      • 显色法
    • 光散射
      • 动态光散射(DLS)粒径分布分析
      • Molecular Weight
      • Nanoparticle Tracking Analysis
      • 静态光散射(SLS)/激光衍射粒度分布分析
      • Zeta Potential
      • Centrifugal Sedimentation
    • 流体控制
      • 临界化学过程的汽化
      • Coriolis Flowmetry
      • Thermal Mass Flowmetry
    • 显微&成像
      • 纳米拉曼(AFM-Raman)
        • 什么是AFM/Raman同区域成像?
        • 什么是针尖增强拉曼光谱?
        • TERS 能够提供什么信息?
        • TERS 中拉曼信号是怎样增强的?
        • TERS 仪器的耦合方式有哪?
        • TERS 针尖的制备工艺?
        • TERS 测试需要什么基底?
        • 什么是用于 TERS 的扫描探针显微镜反馈?
        • 什么是 TERS 的空间分辨率?
        • 怎样定义 TERS 的增强因子?
        • 什么是非线性 TERS?
        • 什么是 TERS 退解问题和虚假信号 ?
        • TERS 在材料科学中主要有哪些应用?
        • TERS 在生命科学中主要有哪些应用?
        • 参考文献
        • 相关仪器
      • 原子力显微镜(AFM)
      • 阴极荧光光谱
      • 颗粒图像分析
      • 显微X射线荧光
      • 拉曼光谱
    • 光谱技术
      • 阴极荧光光谱
        • 阴极荧光光谱
        • 电子显微镜
        • 扫描电子显微镜、环境扫描电子显微镜、聚焦离子束扫描电子显微镜和(扫描)透射电子显微镜的主要区别是什么?
        • 电子显微镜扩展探头
        • SEM-阴极荧光光谱(SEM-CL)
      • 纳米拉曼(AFM-Raman)
      • 探测器
      • 衍射光栅的50年历程
      • 全息光栅和刻划光栅
      • 荧光光谱
        • 荧光光谱
        • 荧光光谱的基本理论
        • 什么是雅布朗斯基图?
        • 什么是荧光测试技术?
        • 稳态荧光技术
        • 什么是荧光各向异性 ?
        • 什么是发光量子产率?
        • 什么是比率荧光?
        • 什么是三维荧光 (EEM,激发发射矩阵 )?
        • 什么是 A-TEEM 光谱 ?
        • 什么是单线态氧?
        • 如何计算信噪比
        • 荧光寿命技术
        • 荧光光谱仪及相关产品
      • HORIBA下一代的红外气体分析技术IRLAM
        • 光学组件
        • 浓度计算算法
        • 应用领域
      • 拉曼光谱
        • 拉曼光谱
        • HORIBA 拉曼创新 50年回顾
        • 拉曼光谱应用领域概述
        • 与其他技术对比
        • 拉曼分析技术
        • 采集拉曼光谱成像和剖面图
        • 拉曼联用技术
        • 共焦显微拉曼光谱
        • 硬件技术
        • 拉曼分析技术
        • 图片库
        • 相关产品
      • 光谱仪、单色仪和摄谱仪
        • 单色仪系统光学元件
        • 光谱带宽和分辨率
        • 阶次、分辨率和色散值
        • 如何选择单色仪和摄谱仪
        • 光谱仪的光通量和光展量
        • 光学信噪比和杂散光
        • 入口光学
        • 光谱仪、单色仪和摄谱仪相关产品
      • 椭圆偏振光谱
        • 椭圆偏振光谱仪:基本概念
        • 椭圆偏振光谱的优势
        • 仪器介绍
        • 测量技术
        • 数据分析
        • 什么是柯西色散模块?
        • 椭圆偏振光谱仪
      • 真空紫外光谱
        • 真空紫外光谱
        • VUV technology
        • High Vacuum (HV), Ultra High Vacuum (UHV), gas purge
        • Light sources in VUV
        • VUV system: Detector
        • Aberration
        • References - Articles
      • X射线荧光
    • 表面等离子体共振
      • Surface Plasmon Resonance imaging
        • 表面等离子体共振成像(SPRi)
        • 技术简史
        • SPR 测量、应用领域及与其他技术的比较
        • 免标记生物分子相互作用基础
        • 仪器
        • SPRi 应用
        • 关键附件、传感芯片、表面化学
        • 分子是如何固定在生物芯片上的?
        • 结论和参考文献
  • 服务
    • 分析服务
      • 应用及服务中心
    • 标定和认证
      • 标定中心
    • 客户支持
      • HORIBA 医疗客户服务中心
      • 现场支持
      • 软件升级
      • STARS 软件服务平台
    • 保养
      • 测功机及其他大修服务
      • 精密测量设备的校准服务
      • Repair Services for SPARC Test Bench Controllers
      • 定期维护
    • 备件和易耗品
    • 测试和咨询
      • 测试中心
  • 企业
    • HORIBA全球
      • 主页
      • 集团主席兼CEO堀场厚致词
      • 企业概要
      • 企业哲学
      • Code of Ethics
      • 我们的未来 (愿景,使命,价值观)
      • 企业管理
      • 董事会成员
      • 企业文化
      • 历史
        • 1945–1960年代
        • 1970年代
        • 1980年代
        • 1990年代
        • 2000年代
        • 2010年代
        • 2020年代
      • HORIBA中国
      • HORIBA Talk
    • 活动
    • 新闻
  • 联系
    • 售后服务与支持
    • 联系我们
    • 集团公司

Zeta电位 open open
  • Zeta Potential
  • Isoelectric Point Measurement
  • Related Products
    技术 » 光散射 » Zeta Potential 

Back to Particle Characterization Products Overview
Back to Particle Webinar List
Back to Particle Applications

Zeta Potential: Layout, Calculating, Analysis

Table of Contents

  • What is Zeta Potential
  • Zeta Potential Layout for SZ-100
  • Calculating Zeta Potential
  • Zeta Potential Analysis
  • Technical Notes
  • Related Products

Zeta Potential

Zeta potential is the charge on a particle at the shear plane

Zeta potential is the charge on a particle at the shear plane. This value of surface charge is useful for understanding and predicting interactions between particles in suspension. Manipulating zeta potential is a method of enhancing suspension stability for formulation work, or speeding particle flocculation for water treatment for example. Measuring zeta potential by electrophoretic light scattering allows one to assess the effects of various strategies for manipulating zeta potential. Electrophoretic light scattering exploits the fact that a charged particle responds to an applied electric field.

Zeta Potential Layout for SZ-100

The particle motion due to the applied electric field is measured by light scattering. The particles are illuminated with laser light and therefore the particles scatter light. The frequency of the scattered light is a function of particle velocity due to the Doppler shift. This explains another name for this technique: laser Doppler electrophoresis. A second beam of light (the reference beam) is mixed with the scattered beam in order to sensitively extract the frequency shift in the scattered light. See the figure below showing the scattered beam mixing with the reference beam at the zeta potential detector in the lower right. The measured magnitude of the frequency shift is then used to determine the particle velocity.

Optical layout for zeta potential measurement in the SZ-100

Calculating Zeta Potential

From the known applied electric field and measured particle velocity, the particle mobility is readily determined. Zeta potential is then calculated from mobility by using a model, the most common of which is the Smoluchowski model. The only parameters required for determining zeta potential are liquid dielectric constant, refractive index, and viscosity. This makes the technique rapid and reliable.

The known electric field and measured particle velocity allow for the calculation of particle mobility, and with choice of model, the zeta potential.

Many environmental factors affect zeta potential including pH. A manual or automatic pH titration can identify both the isoelectric point and ranges of maximum zeta potential, and by extension, predicted stability.

In practice, measurements are made by adding a small amount of suspension or emulsion to the measurement cell and inserting the cell into the instrument. The instrument software then automatically determines the appropriate electric field strength, adjusts the reference beam intensity to ensure the optimal signal to noise ratio, collects and analyzes the data, and presents the results to the user. Often, the effect of H+ or other ions on zeta potential is important. In the former case, a pH titration can be performed, and in the latter, the ion concentration is varied (usually on a logarithmic scale) and a series of zeta potential measurements are performed. Significant labor savings can be realized by using an automated titrator to adjust sample pH.

Zeta Potential Analysis

The zeta potential of a sample is most often used as an indicator of dispersion stability. Large zeta potentials predict a more stable dispersion. Fast and accurate measurement of the zeta potential with the nanoPartica SZ-100V2 can enhance understanding of aggregation and flocculation in samples and speed up the process of developing stable formulations, be they dispersions, emulsions or suspensions.

Measurement of the zeta potential, or electrostatic attraction / repulsion, is important to many industries from pharmaceuticals to mineral processing and from water treatment to additives for electronics. The SZ-100V2 enables fast, reliable and accurate measurement of the zeta potential.


For more information about acquiring an instrument, click here.

Back to top

Technical Notes

PDF
0.44 MB
thumbnail
Z-Average Size Determined by DLS
Dynamic light scattering (DLS) results are often expressed in terms of the Z-average. The Z-average arises when DLS data is analyzed by the use of the technique of cumulants.
open
PDF
0.57 MB
thumbnail
Upper Size Limit of Zeta Potential Measurement
Zeta potential is a measure of the charge on suspended particles. This property is typically more important for suspensions of small particles where there is high surface area and significant particle – particle interactions.
open
PDF
0.45 MB
thumbnail
Lifetime of Zeta Potential Cells
There are several zeta potential cell options for the SZ-100V2 including disposable plastic cells intended to last for several measurements before being replaced. This study investigates how many measurements could be made before the cell required replacement.
open

Browse Products

nanoPartica SZ-100V2
nanoPartica SZ-100V2

纳米粒度及Zeta电位分析仪

300-CA-C Calcium Ion Sensor Cartridge
300-CA-C Calcium Ion Sensor Cartridge

留言咨询

如您有任何疑问,请在此留下详细需求信息,我们将竭诚为您服务。

* 这些字段为必填项。

  • 产品
    • 全部产品
    • 汽车
    • Energy and Envionment
    • Life Science
    • 医疗
    • Materials
    • 半导体
  • 应用
    • 饮用水处理监测
    • 汽车制造
    • 半导体制程
    • 研究所及分析测试中心
  • 技术
    • 辉光放电光谱
    • 四级质谱
    • 拉曼光谱
  • 服务
    • 现场支持
    • 备件和易耗品
  • 企业
    • 新闻
    • 活动
    • 招聘
    • 历史
    • 企业文化
  • 联系
    • 招聘联系
    • 联系表
    • 全球分公司
    • 投资者关系

条款和条件 隐私声明 Cookie HORIBA Group Social Media