HORIBA
Search English
China
  • 产品
    • 汽车
    • 过程与环境
    • 医疗
    • 半导体
    • 科学仪器
    • 水与液体
    • 全部产品
  • 应用
    • 艺术品/博物馆
      • 文物保护
      • 博物馆、历史遗址和类似机构
    • Biopharma and Pharma
    • Cosmetics
    • 教育、研发及政府机构
      • 研究所及分析测试中心
    • 能源与环境
      • 为什么选择HORIBA
      • 氢能
        • 全球合作
        • 全球碳中和趋势与战略
        • 燃料电池性能评估
        • FCV燃料电池车评估
        • 固定式燃料电池
        • 火力发电中氢/氨燃料发动机、燃气轮机的测量与评估
        • 加氢站
        • 电解水
        • 氢气制造
      • 优化能源利用
        • 能源管理系统 (EMS)
        • 环境影响评估(生命周期评估和温室气体核算体系)
        • 电池制造/回收
      • 碳捕集和利用
        • 减少二氧化碳排放
        • 直接碳捕集
        • 碳回收
      • 煤炭和消耗性燃料
      • 电气设施
      • 能源燃油
      • 环境评估
      • 石油和煤炭产品制造业
        • 石油化工
      • 光伏
      • 石油和天然气
      • RoHS和 ELV
    • 食品和饮料
      • 农业
      • 饮料
      • 食品
      • 食品 / 饮料生产
    • 医疗诊断
    • 工业
      • 电池
      • 商业及专业服务
        • 气体质量流量控制与测量和对PM2.5参考值的测量
      • 建筑与工程
      • 电气设备
      • 机械
    • 信息科学
      • 半导体
        • 二维材料
        • 石墨烯
        • 光伏
        • 显示技术
        • 数据存储
        • 纳米材料
      • 半导体制程
      • 信息设备
    • Life Science
      • Biopharma and Pharma
        • Drug Development and Formulation
        • Process Development and Quality
        • PAT Solutions
        • Small Molecule Drugs
        • Protein Analysis
        • Cell Culture Media
        • New Modality
        • Microbial Testing
        • Low Molecular Drugs
      • Biotechnology and Biomedical
      • Cosmetics
      • Food and Beverage
    • 材料
      • Carbon
      • Polymers and Composites
      • Raw Materials for Semiconductors
      • Metals
      • Minerals
      • Corrosion
      • 陶瓷
      • 玻璃
      • 化学
      • 化工生产
      • 建筑材料
      • 包装材料
      • 纸,林业制品
      • 材料研究
      • 光伏
      • 法庭科学
    • 交通出行及运输
      • 汽车制造
      • 发动机、涡轮机和动力传动设备制造
      • 实际驾驶排放
      • Intelligent Lab
      • Marine
    • 废物管理
      • 固体废物燃烧、管理
      • 废水管理和修复服务
        • 废水和土壤分析
        • 废水处理
      • Plastic Waste
    • 水质
      • 饮用水处理监测
      • 水循环
        • 水质检测
  • 技术
    • 元素分析
      • 电感耦合等离子体发射光谱仪 (ICP-OES)
        • 电感耦合等离子体发射光谱仪 (ICP-OES)
        • HORIBA ICP 等离子体发射光谱仪
        • ICP-OES 的主要应用领域有哪些?
        • ICP-OES 与其他技术的区别
        • 原则和理论
        • 仪器组成及原理
        • 激发源
        • 色散系统
        • ICP-OES 的检测系统
        • ICP-OES 的性能
      • 碳/硫和氧/氮/氢分析
    • 体外诊断技术
      • MDSS微量分血技术
      • 网织红细胞分析技术
      • CRP
      • 全自动推染片系统
      • 结果管理
      • 吸光度
      • 荧光分析技术
      • 流式细胞术
      • 阻抗法
      • 沉降作用
      • 分光光度法
      • 电位分析法
      • 体外诊断技术
      • 凝固法
      • 免疫比浊法
      • 显色法
    • 光散射
      • 动态光散射(DLS)粒径分布分析
      • Molecular Weight
      • Nanoparticle Tracking Analysis
      • 静态光散射(SLS)/激光衍射粒度分布分析
      • Zeta Potential
      • Centrifugal Sedimentation
    • 流体控制
      • 临界化学过程的汽化
      • Coriolis Flowmetry
      • Thermal Mass Flowmetry
    • 显微&成像
      • 纳米拉曼(AFM-Raman)
        • 什么是AFM/Raman同区域成像?
        • 什么是针尖增强拉曼光谱?
        • TERS 能够提供什么信息?
        • TERS 中拉曼信号是怎样增强的?
        • TERS 仪器的耦合方式有哪?
        • TERS 针尖的制备工艺?
        • TERS 测试需要什么基底?
        • 什么是用于 TERS 的扫描探针显微镜反馈?
        • 什么是 TERS 的空间分辨率?
        • 怎样定义 TERS 的增强因子?
        • 什么是非线性 TERS?
        • 什么是 TERS 退解问题和虚假信号 ?
        • TERS 在材料科学中主要有哪些应用?
        • TERS 在生命科学中主要有哪些应用?
        • 参考文献
        • 相关仪器
      • 原子力显微镜(AFM)
      • 阴极荧光光谱
      • 颗粒图像分析
      • 显微X射线荧光
      • 拉曼光谱
    • 光谱技术
      • 阴极荧光光谱
        • 阴极荧光光谱
        • 电子显微镜
        • 扫描电子显微镜、环境扫描电子显微镜、聚焦离子束扫描电子显微镜和(扫描)透射电子显微镜的主要区别是什么?
        • 电子显微镜扩展探头
        • SEM-阴极荧光光谱(SEM-CL)
      • 纳米拉曼(AFM-Raman)
      • 探测器
      • 衍射光栅的50年历程
      • 全息光栅和刻划光栅
      • 荧光光谱
        • 荧光光谱
        • 荧光光谱的基本理论
        • 什么是雅布朗斯基图?
        • 什么是荧光测试技术?
        • 稳态荧光技术
        • 什么是荧光各向异性 ?
        • 什么是发光量子产率?
        • 什么是比率荧光?
        • 什么是三维荧光 (EEM,激发发射矩阵 )?
        • 什么是 A-TEEM 光谱 ?
        • 什么是单线态氧?
        • 如何计算信噪比
        • 荧光寿命技术
        • 荧光光谱仪及相关产品
      • HORIBA下一代的红外气体分析技术IRLAM
        • 光学组件
        • 浓度计算算法
        • 应用领域
      • 拉曼光谱
        • 拉曼光谱
        • HORIBA 拉曼创新 50年回顾
        • 拉曼光谱应用领域概述
        • 与其他技术对比
        • 拉曼分析技术
        • 采集拉曼光谱成像和剖面图
        • 拉曼联用技术
        • 共焦显微拉曼光谱
        • 硬件技术
        • 拉曼分析技术
        • 图片库
        • 相关产品
      • 光谱仪、单色仪和摄谱仪
        • 单色仪系统光学元件
        • 光谱带宽和分辨率
        • 阶次、分辨率和色散值
        • 如何选择单色仪和摄谱仪
        • 光谱仪的光通量和光展量
        • 光学信噪比和杂散光
        • 入口光学
        • 光谱仪、单色仪和摄谱仪相关产品
      • 椭圆偏振光谱
        • 椭圆偏振光谱仪:基本概念
        • 椭圆偏振光谱的优势
        • 仪器介绍
        • 测量技术
        • 数据分析
        • 什么是柯西色散模块?
        • 椭圆偏振光谱仪
      • 真空紫外光谱
        • 真空紫外光谱
        • VUV technology
        • High Vacuum (HV), Ultra High Vacuum (UHV), gas purge
        • Light sources in VUV
        • VUV system: Detector
        • Aberration
        • References - Articles
      • X射线荧光
    • 表面等离子体共振
      • Surface Plasmon Resonance imaging
        • 表面等离子体共振成像(SPRi)
        • 技术简史
        • SPR 测量、应用领域及与其他技术的比较
        • 免标记生物分子相互作用基础
        • 仪器
        • SPRi 应用
        • 关键附件、传感芯片、表面化学
        • 分子是如何固定在生物芯片上的?
        • 结论和参考文献
  • 服务
    • 分析服务
      • 应用及服务中心
    • 标定和认证
      • 标定中心
    • 客户支持
      • HORIBA 医疗客户服务中心
      • 现场支持
      • 软件升级
      • STARS 软件服务平台
    • 保养
      • 测功机及其他大修服务
      • Calibration Services for Measuring Equipment
      • Repair Services for SPARC Test Bench Controllers
      • 定期维护
    • 备件和易耗品
    • 测试和咨询
      • 测试中心
  • 企业
    • HORIBA全球
      • 主页
      • 集团主席兼CEO堀场厚致词
      • 企业概要
      • 企业哲学
      • Code of Ethics
      • 我们的未来 (愿景,使命,价值观)
      • 企业管理
      • 董事会成员
      • 企业文化
      • 历史
        • 1945–1960年代
        • 1970年代
        • 1980年代
        • 1990年代
        • 2000年代
        • 2010年代
        • 2020年代
      • HORIBA中国
      • HORIBA Talk
    • 活动
    • 新闻
  • 联系
    • 售后服务与支持
    • 联系我们
    • 集团公司

动态光散射(DLS)粒度分布分析 open open
  • 动态光散射(DLS)粒径分布分析
  • 选择DLS粒度测量的浓度范围
  • 什么是Z-平均值
  • SZ-100 Top 10 Lists
    技术 » 光散射 » 动态光散射(DLS)粒径分布分析 

Back to Particle Characterization Products Overview
Back to Particle Webinar List
Back to Particle Applications

Dynamic Light Scattering (DLS) Particle Size Distribution Analysis

Dynamic Light Scattering Technology

Particle size can be determined by measuring the random changes in the intensity of light scattered from a suspension or solution. This technique is commonly known as dynamic light scattering (DLS), but is also called photon correlation spectroscopy (PCS) and quasi-elastic light scattering (QELS). The latter terms are more common in older literature.

After a few comments on the applications of dynamic light scattering, this page explains the technique beginning the actual phenomena under study (particle motion, not particle size). The nature of the measurement and data interpretation is then discussed. Finally, there are some concluding comments.

Applications for Dynamic Light Scattering

DLS is most commonly used to analyze nanoparticles. Examples include determining nanogold size, protein size, latex size, and colloid size. In general, the technique is best used for submicron particles and can be used to measure particle with sizes less than a nanometer. In this size regime (microns to nanometers) and for the purposes of size measurement (but not thermodynamics!) the distinction between a molecule (such as a protein or macromolecule) and a particle (such as nanogold) and even a second liquid phase (such as in an emulsion) becomes blurred. Dynamic light scattering can also be used as a probe of complex fluids such as concentrated solutions. However, this application is much less common than particle sizing.

Stokes Einstein: Relating Particle Size to Particle Motion

The Stokes-Einstein relation that connects diffusion coefficient measured by dynamic light scattering to particle size.

Small particles in suspension undergo random thermal motion known as Brownian motion. This random motion is modeled by the Stokes-Einstein equation. Below the equation is given in the form most often used for particle size analysis.

where

  • Dh is the hydrodynamic diameter (this is the goal: particle size!)
  • Dt is the translational diffusion coefficient (we find this by dynamic light scattering)
  • kB is Boltzmann’s constant (we know this)
  • T is thermodynamic temperature (we control this)
  • η is dynamic viscosity (we know this)  

The calculations are handled by instrument software. However, the equation does serve as important reminder about a few points. The first is that sample temperature is important, at it appears directly in the equation. Temperature is even more important due to the viscosity term since viscosity is a stiff function of temperature. Finally, and most importantly, it reminds the analyst that the particle size determined by dynamic light scattering is the hydrodynamic size. That is, the determined particle size is the size of a sphere that diffuses the way as your particle.

For those who work with protein sizing and other areas where hydrodynamic radius is more commonly used, note that the development here is around diameter. Radius calculations are the same except for a factor of two. 

Also, a note to those interested in polymer size. The hydrodynamic radius is not the same as the radius of gyration. Hydrodynamic sizes are more easily measured than radii of gyration and can be measured over a wider range of sizes. The conversion from hydrodynamic radius to radius of gyration is a function of chain architecture (including questions of random coil vs. hard sphere, globular, dendrimer, chain stiffness, and degree of branching).

How to Measure Particle Motion I: Dynamic Light Scattering Optical Setup

Optical setup for dynamic light scattering (DLS) nanoparticle size analyer

A top view of the optical setup for DLS is shown above.

Light from the laser light source illuminates the sample in the cell. The scattered light signal is collected with one of two detectors, either at a 90 degree (right angle) or 173 degree (back angle) scattering angle. The provision of both detectors allows more flexibility in choosing measurement conditions.  Particles can be dispersed in a variety of liquids. Only liquid refractive index and viscosity needs to be known for interpreting the measurement results.

The obtained optical signal shows random changes due to the randomly changing relative position of the particles. This is shown schematically in the graph below. 

Optical signal from a nanoparticle sample on a microsecond timescale.

The “noise” is actually due to particle motion and will be used to extract the particle size. In contrast to laser diffraction, DLS measurements are typically made at a single angle, although data obtained at several angles can be useful. In addition, the technique is completely noninvasive; the particle motion continues whether or not it is being probed by DLS.

The variations in the signal arise due to the random Brownian motion of the particles. Treating this random signal is discussed in the next section on extracting particle motion.

How to Extract Particle Diffusion Coefficient: Dynamic Light Scattering Data Interpretation

Autocorrelation Function from dynamic light scattering. The decay of this function is used to extract particle size. Faster decays correspond to smaller particles.

The signal can be interpreted in terms of an autocorrelation function. Incoming data is processed in real time with a digital signal processing device known as a correlator and the autocorrelation function as a function of delay time, τ, is extracted.

Exponential decay of autocorrelation function. The decay constant is proportional to the diffusion coefficient.

For a sample where all of the particles are the same size, the baseline subtracted autocorrelation function, C, is simply an exponential decay of the following form:

Γ is readily derived from experimental data by a curve fit. The diffusion coefficient is obtained from the relation Γ=Dtq2 where q is the scattering vector, given by q=(4πn/λ)sin(θ/2). The refractive index of the liquid is n. The wavelength of the laser light is λ, and scattering angle, θ. Inserting Dt into the Stokes-Einstein equation above and solving for particle size is the final step. 

Analyzing Real Particle Size Distributions I: The Method of Cumulants and Z-average

Exponential decay of autocorrelation function. The linear decay constant is proportional to the average diffusion coefficient and is used to extract average particle size.

The discussion above can be extended to real nanoparticle samples that contain a distribution of particle sizes. The exponential decay is rewritten as a power series:

Once again, a decay constant is extracted and interpreted to obtain particle size. However, in this case, the obtained particle size, known as the z-average size, is a weighted mean size. Unfortunately, the weighting is somewhat convoluted. Recall that the decay constant is proportional to the diffusion coefficient. So, by dynamic light scattering one has determined the intensity weighted diffusion coefficient. The diffusion coefficient is inversely proportional to size. So, in truth, the “z-average size” is the intensity weighted harmonic mean size. This definition differs substantially from that of the z-average radius of gyration encountered in the light scattering study of polymers.

Despite the convoluted meaning, the z-average size increases as the particle size increases. And, it is extremely easy to measure reliably. For these reasons, the z-average size has become the accepted norm for particle sizing by dynamic light scattering. 

Analyzing Real Particle Size Distributions II: Size Distribution Data

Electric field autocorrelation function as a sum of exponential decays. The decay constants are inversely proportional to the particle size.

While a detailed discussion is beyond the scope of this work, it is possible to extract size distribution data from DLS data. One can convert the measured autocorrelation function into what is known as an electric field autocorrelation function, g1(τ). Then use the following relationship between g1(τ) and the scattered intensity, S, for each possible decay constant, Γ. The overall electric field autocorrelation function is the intensity weighted sum of the decays due to every particle in the system.

Inversion of this equation, that is using experimentally determined values of g1(τ) to find values of S(Γ), will lead to information about the size distribution. Unlike the cumulants analysis discussed above, this is an ill-posed mathematical problem. Even so, the technique remains useful for interpreting DLS data.

Concluding Comments and Additional Thoughts

The underlying theory of measurement by dynamic light scattering was discussed. Many of the points on this web page are starting points for further investigation depending on the reader’s analytic needs and interests. All of these equations and the analysis are handled automatically in the HORIBA software. As such, dynamic light scattering has found application for determining protein size, nanoparticle size, and colloid size.


For more information about acquiring an instrument, click here.

Back to top

Technical Notes

PDF
0.3 MB
thumbnail
DLS of Size Standards
Dynamic light scattering provides fast, accurate, and repeatable nanoparticle size information. Applications include metal and oxide powders, latexes, drug delivery vehicles, and dozens other materials.
open
PDF
0.46 MB
thumbnail
Preparing Polystyrene Latex Standards for DLS
Latex is an important application for dynamic light scattering. In addition, monodisperse latex standards are often used to evaluate instrument performance. Frequently these materials are polystyrene and called “PSL standards” where PSL stands for polystyrene latex.
open

Browse Products

nanoPartica SZ-100V2
nanoPartica SZ-100V2

纳米粒度及Zeta电位分析仪

留言咨询

如您有任何疑问,请在此留下详细需求信息,我们将竭诚为您服务。

* 这些字段为必填项。

  • 产品
    • 全部产品
    • 汽车
    • Energy and Envionment
    • Life Science
    • 医疗
    • Materials
    • 半导体
  • 应用
    • 饮用水处理监测
    • 汽车制造
    • 半导体制程
    • 研究所及分析测试中心
  • 技术
    • 辉光放电光谱
    • 四级质谱
    • 拉曼光谱
  • 服务
    • 现场支持
    • 备件和易耗品
  • 企业
    • 新闻
    • 活动
    • 招聘
    • 历史
    • 企业文化
  • 联系
    • 招聘联系
    • 联系表
    • 全球分公司
    • 投资者关系

条款和条件 隐私声明 Cookie HORIBA Group Social Media