黄岩谊
博士、教授
材料与科学工程系 教授
联系电话:010-62744058
电子邮箱:yanyi@pku.edu.cn
个人主页:http://www2.coe.pku.edu.cn/subpage.asp?id=234

教育经历:

  • 2005-2006,博士后,斯坦福大学生物工程系(微流芯片与分子生物学)
  • 2002-2005,博士后,加州理工学院应用物理系(光电子学与微纳加工)
  • 2002,理学博士,北京大学化学学院(分子基功能材料及激光光谱学)
  • 1997,理学学士,北京大学化学学院(富勒烯化学)

研究方向:

黄岩谊研究组的研究重点集中在基础物质科学与实用工程器件的交汇点。研究组一方面将致力于合成具有特定功能的先进材料,并探求隐藏在功能背后的物理化学特性。另一方面,研究组还将竭力推进各种新型材料在实用型器件,特别是微型化器件上的应用。目前研究组的具体研究包括以下三个领域:

  • 大规模集成微流芯片及其在材料化学与分子生物学中的应用
  • 非传统微纳加工技术及器件制备
  • 集成光学芯片与器件,以及面向化学与生命科学的微纳光电子器件
  • 实验室主页:http://gene.pku.edu.cn

奖励与荣誉:

  • 1993,全国化学竞赛暨冬令营,上海,一等奖
  • 1995,北京大学三好学生标兵
  • 1995,北京大学董事东方海外奖学金
  • 1995,北京大学五四青年科学奖,一等奖
  • 1995,北京市三好学生
  • 1997,北京大学五四青年科学奖,一等奖
  • 1997,北京地区优秀毕业生
  • 1999,北京大学研究生学术十杰
  • 2000,中国大学生五四奖学金及建昊杯
  • 2001,北京大学学生五四奖章
  • 2001,北京市化学会优秀论文一等奖
  • 2001,北京市科学技术协会优秀论文一等奖
  • 2001,香山科学会议优秀论文奖
  • 2002,李王十二妹奖学金
  • 2003,国家自然科学二等奖(第四完成人)
  • 2004,全国优秀博士论文

Yanyi Huang, Professor, Peking University

Yanyi Huang received his B.S. (Chemistry) and Sc.D. (Inorganic Chemistry) from Peking University in 1997 and 2002, respectively. He worked at Caltech and then moved to Stanford as Postdoctoral Scholars. He joined Peking University faculty in 2006. He is Professor in College of Engineering, and Principal Investigator of Biodynamic Optical Imaging Center (BIOPIC). His current research interests are single cell studies with microfluidics, label-free microscopy, and high throughput sequencing.

会议报告主题/Topic:
Seeing the chemistry in live cells through stimulated Raman scattering microscopy

摘要/Abstract:
Quantitative single-cell analysis enables the characterization of cellular systems with a level of detail that cannot be achieved with ensemble measurement. Nonlinear optical microscopy exploits light−matter inter- actions that are intrinsic to, and often specific to, the unique optical properties of chemical compounds and structures. I will explore quantitative cellular imaging applications with nonlinear microscopy techniques, majorly the coherent Raman scattering and transient absorption. These techniques have demonstrated powerful applications in tissue imaging and in vivo diagnostics in which many cells and cell types must be interrogated in unison. One strategy to achieve high specificity while avoiding large fluorescent molecule labels is to label proteins or cellular components of interest with small tags which have distinct vibrational signatures. Deuterium, alkyne, and azide, for example, all display a Raman peak in the “silent region” of the spectrum, a spectral region in which cells typically do not have any significant Raman peaks. With the use of small chemical tags, coherent Raman scattering offers enhanced chemical specificity with minimal perturbation of the system, which is important in many current biological research endeavors. We also applied the transient absorption microscopy to image nanodiamonds and gold nanorods in live cells. The transient absorption signals were monitored through lock-in amplification. This provides a new way of observing nanomaterials with no need of fluorescent modification, and with no interference from background autofluorescence.