谭平恒,博士,中科院半导体所研究员
1996年毕业于北京大学物理系,2001年在中科院半导体研究所获得博士学位,之后在德国慕尼黑技术大学瓦尔特肖特基研究所做博士后研究。2003年回到中科院半导体所半导体超晶格国家重点实验室工作。2006-2007年曾获英国皇家学会资助访问英国剑桥大学工程系。一直从事各种新型纳米材料的光学性质研究,获得了一系列有意义的结果,同时发展了多项创新实验技术,已获13 项国家授权专利。曾于2003年获得全国百篇优秀博士学位论文, 2005年入选北京市科技新星计划, 2007年获得第四届徐叙瑢发光学优秀青年论文一等奖,2008年获得卢嘉锡青年人才奖,2011年入选中科院青年创新促进会会员,2012年度获国家杰出青年研究基金资助。

Ping-Heng Tan received the B. Sc. Degree in Physics from Peking University, Beijing, China, in 1997, and Ph. D. degree in Condensed Matter Physics from Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China, in 2001. From 2001 to 2003, he worked as a postdoc research associate at Walter Schottky Institute, Technishe Universitaet Muenchen, Germany. In 2003, he has been an Associate Professor with the Institute of Semiconductors, Chinese Academy of Sciences. His current research interests involved structural and optical properties of various functional nanoscale materials.

Selected publications
1. P. H. Tan, Z. Y. Xu, X. D. Luo, W. K. Ge, Y. Zhang, A. Mascarenhas, H. P. Xin, and C. W. Tu, Resonant Raman scattering with the E+ band in a dilute GaAs1-xNx alloy (x=0.1%), to be published in Appl. Phys. Lett. (2006).
2. P. H. Tan, X. D. Luo, Z. Y. Xu, Y. Zhang, A. Mascarenhas, H. P. Xin, C. W. Tu, and W. K. Ge, Photoluminescence from the nitrogen-perturbed above-bandgap states in dilute GaAs1-xNx alloys: A microphotoluminescence study, Phys. Rev. B 73, 205205 (2006).
3. P. H. Tan, D. Bougeard, G. Abstreiter, and K. Brunner, Depth profile of strain and composition in Si/Ge dot multilayers by microscopic phonon Raman spectroscopy, J. Appl. Phys. 98:11, 113517 (2005).
4. Tan P., Dimovski S., and Gogotsi Y., "Raman scattering of non-planar graphite: arched edges, polyhedral crystals, whiskers and cones", in Raman Spectroscopy in Carbons: form Nanotubes to Diamond. Edited by A. Ferrari and J. Robertson (The Royal Society, London, 2004). Website: Phil. Trans. R. Soc. Lond. A 362, pp. 2289-2310 (2004).
5. P. Tan, D. Bougeard, G. Abstreiter, and K. Brunner, "Raman scattering of folded acoustic phonons in self-assembled Si/Ge dot superlattices", Appl. Phys. Lett. 84:14, pp. 2632-4 (2004).
6. P. Tan, K. Brunner, D. Bougeard, and G. Abstreiter, "Raman characterizations of strain and composition in small-sized self-assembled Si/Ge dots", Phys. Rev. B 68, 125302 (2003).
7. P. Tan, L. An, L. Liu, Z. Guo, R. Czerw, D. Carroll, P. Ajayan, N. Zhang, and H. Guo, "Probing the phonon dispersion relations of graphite from the double resonance processes of Stokes and anti-Stokes Raman scatterings in multi-walled carbon nanotubes", Phys. Rev. B 66, 245410 (2002).
8. P. Tan, C. Hu, J. Dong, W. Shen and B. Zhang, "Polarization properties, high-order Raman spectra, and frequency asymmetry between Stokes and anti-Stokes scattering of Raman modes in a graphite whisker",Phys. Rev. B 64:21, 214301 (2001).

会议报告主题/Topic:
The interface coupling of two-dimensional heterostructures probed by ultra-low-frequency and multi-wavelength Raman spectroscopies

摘要/Abstract:
Graphene and other two-dimensional materials have attracted tremendous attention because of their peculiar physical properties. Moreover, these two-dimensional crystals can be "combined" to form various hybrids and heterostructures, creating "materials on demand". In these combined materials, the interaction between the layers leads to modified mechanical, thermal and electronic properties as compared to the constituents. Here, by measuring the interlayer shear modes[1,2] using multi-wavelength Raman spectroscopy, we probe the coupling at the interface between two artificially stacked few-layer graphenes, rotated with respect to each other.[3] The strength of the interlayer coupling between the two interface layers is found to be only 20% of that between Bernal-stacked layers. This allows us to directly quantify the interface interaction. We find a significant intensity enhancement of the interlayer coupling modes (C peaks) due to resonance with new optically allowed electronic transitions, determined by the relative orientation of the layers. This study provides fundamental understanding into the interlayer coupling in combined two-dimensional materials, and paves way to the exploitation of two-dimensional hybrids and heterostructures.[4,5]

Reference:
[1] P. H. Tan, W. P. Han, W. J. Zhao, et al., Nature Materials 11, 294 (2012)
[2] Ping-Heng Tan, Jiang-Bin Wu, Wen-Peng Han, et al., Phys. Rev. B 89, 235404(2014).
[3] Jiang-Bin Wu, Xin Zhang, Mari Ijaes, et al., Nature Communication 5, 5309(2014) .
[4] F. Bonaccorso, P. H. Tan, A. C. Ferrari, ACS Nano 7, 1838-1844(2013).
[5] X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang and P.-H. Tan, Chem. Soc. Rev. 2015, Doi:10.1039/c4cs00282b.