HORIBA
Search English
China
  • 产品
    • 汽车
    • 过程与环境
    • 医疗
    • 半导体
    • 科学仪器
    • 水与液体
    • 全部产品
  • 应用
    • 艺术品/博物馆
      • 文物保护
      • 博物馆、历史遗址和类似机构
    • Biopharma and Pharma
    • Cosmetics
    • 教育、研发及政府机构
      • 研究所及分析测试中心
    • 能源与环境
      • 为什么选择HORIBA
      • 氢能
        • 全球合作
        • 全球碳中和趋势与战略
        • 燃料电池性能评估
        • FCV燃料电池车评估
        • 固定式燃料电池
        • 火力发电中氢/氨燃料发动机、燃气轮机的测量与评估
        • 加氢站
        • 电解水
        • 氢气制造
      • 优化能源利用
        • 能源管理系统 (EMS)
        • 环境影响评估(生命周期评估和温室气体核算体系)
        • 电池制造/回收
      • 碳捕集和利用
        • 减少二氧化碳排放
        • 直接碳捕集
        • 碳回收
      • 煤炭和消耗性燃料
      • 电气设施
      • 能源燃油
      • 环境评估
      • 石油和煤炭产品制造业
        • 石油化工
      • 光伏
      • 石油和天然气
      • RoHS和 ELV
    • 食品和饮料
      • 农业
      • 饮料
      • 食品
      • 食品 / 饮料生产
    • 医疗诊断
    • 工业
      • 电池
      • 商业及专业服务
        • 气体质量流量控制与测量和对PM2.5参考值的测量
      • 建筑与工程
      • 电气设备
      • 机械
    • 信息科学
      • 半导体
        • 二维材料
        • 石墨烯
        • 光伏
        • 显示技术
        • 数据存储
        • 纳米材料
      • 半导体制程
      • 信息设备
    • Life Science
      • Biopharma and Pharma
        • Drug Development and Formulation
        • Process Development and Quality
        • PAT Solutions
        • Small Molecule Drugs
        • Protein Analysis
        • Cell Culture Media
        • New Modality
        • Microbial Testing
        • Low Molecular Drugs
      • Biotechnology and Biomedical
      • Cosmetics
      • Food and Beverage
    • 材料
      • Carbon
      • Polymers and Composites
      • Raw Materials for Semiconductors
      • Metals
      • Minerals
      • Corrosion
      • 陶瓷
      • 玻璃
      • 化学
      • 化工生产
      • 建筑材料
      • 包装材料
      • 纸,林业制品
      • 材料研究
      • 光伏
      • 法庭科学
    • 交通出行及运输
      • 汽车制造
      • 发动机、涡轮机和动力传动设备制造
      • 实际驾驶排放
      • Intelligent Lab
      • Marine
    • 废物管理
      • 固体废物燃烧、管理
      • 废水管理和修复服务
        • 废水和土壤分析
        • 废水处理
      • Plastic Waste
    • 水质
      • 饮用水处理监测
      • 水循环
        • 水质检测
  • 技术
    • 元素分析
      • 电感耦合等离子体发射光谱仪 (ICP-OES)
        • 电感耦合等离子体发射光谱仪 (ICP-OES)
        • HORIBA ICP 等离子体发射光谱仪
        • ICP-OES 的主要应用领域有哪些?
        • ICP-OES 与其他技术的区别
        • 原则和理论
        • 仪器组成及原理
        • 激发源
        • 色散系统
        • ICP-OES 的检测系统
        • ICP-OES 的性能
      • 碳/硫和氧/氮/氢分析
    • 体外诊断技术
      • MDSS微量分血技术
      • 网织红细胞分析技术
      • CRP
      • 全自动推染片系统
      • 结果管理
      • 吸光度
      • 荧光分析技术
      • 流式细胞术
      • 阻抗法
      • 沉降作用
      • 分光光度法
      • 电位分析法
      • 体外诊断技术
      • 凝固法
      • 免疫比浊法
      • 显色法
    • 光散射
      • 动态光散射(DLS)粒径分布分析
      • Molecular Weight
      • Nanoparticle Tracking Analysis
      • 静态光散射(SLS)/激光衍射粒度分布分析
      • Zeta Potential
      • Centrifugal Sedimentation
    • 流体控制
      • 临界化学过程的汽化
      • Coriolis Flowmetry
      • Thermal Mass Flowmetry
    • 显微&成像
      • 纳米拉曼(AFM-Raman)
        • 什么是AFM/Raman同区域成像?
        • 什么是针尖增强拉曼光谱?
        • TERS 能够提供什么信息?
        • TERS 中拉曼信号是怎样增强的?
        • TERS 仪器的耦合方式有哪?
        • TERS 针尖的制备工艺?
        • TERS 测试需要什么基底?
        • 什么是用于 TERS 的扫描探针显微镜反馈?
        • 什么是 TERS 的空间分辨率?
        • 怎样定义 TERS 的增强因子?
        • 什么是非线性 TERS?
        • 什么是 TERS 退解问题和虚假信号 ?
        • TERS 在材料科学中主要有哪些应用?
        • TERS 在生命科学中主要有哪些应用?
        • 参考文献
        • 相关仪器
      • 原子力显微镜(AFM)
      • 阴极荧光光谱
      • 颗粒图像分析
      • 显微X射线荧光
      • 拉曼光谱
    • 光谱技术
      • 阴极荧光光谱
        • 阴极荧光光谱
        • 电子显微镜
        • 扫描电子显微镜、环境扫描电子显微镜、聚焦离子束扫描电子显微镜和(扫描)透射电子显微镜的主要区别是什么?
        • 电子显微镜扩展探头
        • SEM-阴极荧光光谱(SEM-CL)
      • 纳米拉曼(AFM-Raman)
      • 探测器
      • 衍射光栅的50年历程
      • 全息光栅和刻划光栅
      • 荧光光谱
        • 荧光光谱
        • 荧光光谱的基本理论
        • 什么是雅布朗斯基图?
        • 什么是荧光测试技术?
        • 稳态荧光技术
        • 什么是荧光各向异性 ?
        • 什么是发光量子产率?
        • 什么是比率荧光?
        • 什么是三维荧光 (EEM,激发发射矩阵 )?
        • 什么是 A-TEEM 光谱 ?
        • 什么是单线态氧?
        • 如何计算信噪比
        • 荧光寿命技术
        • 荧光光谱仪及相关产品
      • HORIBA下一代的红外气体分析技术IRLAM
        • 光学组件
        • 浓度计算算法
        • 应用领域
      • 拉曼光谱
        • 拉曼光谱
        • HORIBA 拉曼创新 50年回顾
        • 拉曼光谱应用领域概述
        • 与其他技术对比
        • 拉曼分析技术
        • 采集拉曼光谱成像和剖面图
        • 拉曼联用技术
        • 共焦显微拉曼光谱
        • 硬件技术
        • 拉曼分析技术
        • 图片库
        • 相关产品
      • 光谱仪、单色仪和摄谱仪
        • 单色仪系统光学元件
        • 光谱带宽和分辨率
        • 阶次、分辨率和色散值
        • 如何选择单色仪和摄谱仪
        • 光谱仪的光通量和光展量
        • 光学信噪比和杂散光
        • 入口光学
        • 光谱仪、单色仪和摄谱仪相关产品
      • 椭圆偏振光谱
        • 椭圆偏振光谱仪:基本概念
        • 椭圆偏振光谱的优势
        • 仪器介绍
        • 测量技术
        • 数据分析
        • 什么是柯西色散模块?
        • 椭圆偏振光谱仪
      • 真空紫外光谱
        • 真空紫外光谱
        • VUV technology
        • High Vacuum (HV), Ultra High Vacuum (UHV), gas purge
        • Light sources in VUV
        • VUV system: Detector
        • Aberration
        • References - Articles
      • X射线荧光
    • 表面等离子体共振
      • Surface Plasmon Resonance imaging
        • 表面等离子体共振成像(SPRi)
        • 技术简史
        • SPR 测量、应用领域及与其他技术的比较
        • 免标记生物分子相互作用基础
        • 仪器
        • SPRi 应用
        • 关键附件、传感芯片、表面化学
        • 分子是如何固定在生物芯片上的?
        • 结论和参考文献
  • 服务
    • 分析服务
      • 应用及服务中心
    • 标定和认证
      • 标定中心
    • 客户支持
      • HORIBA 医疗客户服务中心
      • 现场支持
      • 软件升级
      • STARS 软件服务平台
    • 保养
      • 测功机及其他大修服务
      • 精密测量设备的校准服务
      • Repair Services for SPARC Test Bench Controllers
      • 定期维护
    • 备件和易耗品
    • 测试和咨询
      • 测试中心
  • 企业
    • HORIBA全球
      • 主页
      • 集团主席兼CEO堀场厚致词
      • 企业概要
      • 企业哲学
      • Code of Ethics
      • 我们的未来 (愿景,使命,价值观)
      • 企业管理
      • 董事会成员
      • 企业文化
      • 历史
        • 1945–1960年代
        • 1970年代
        • 1980年代
        • 1990年代
        • 2000年代
        • 2010年代
        • 2020年代
      • HORIBA中国
      • HORIBA Talk
    • 活动
    • 新闻
  • 联系
    • 售后服务与支持
    • 联系我们
    • 集团公司

Technical Journal "Readout" open open
  • Readout No. E58 - Analysis and Measurement Technologies that Contribute to the Development of Next Generation Semiconductor Devices
  • Readout No. E57 - HORIBA’s Initiatives in the Next-Generation Energy and Environment Fields
  • Readout No. E56 - Analytical Solutions in Megatrends
  • Readout No. E55 - 2021 Masao Horiba Awards - Spectroscopic analysis and measurement technology in the life science field
  • Readout No. E54 - Microplastics and Nanoplastics: Analysis and Method Development
  • Masao Horiba Awards Research Articles
  • Readout No. E53 - 2019 Masao Horiba Awards - Advanced Analytical and Measurement Technologies for Efficient Control System to Maximize the Performance of Electric Power and Batteries Usage
  • Readout No. E52 - Green Innovation for Marine Shipping Industry
  • Readout No. E51 - 2018 Masao Horiba Awards Advanced analytical and measurement technologies in semiconductor manufacturing processes
  • Readout No. E50 - Low-Carbon Society and Environmental Improvement
  • Readout No. E49 - Photonic Instrumentation in Life Science
  • Readout No. E48 - Water Measurement Experts
  • Readout No. E47 - Application for Semiconductor Manufacturing Process
  • Readout No. E46 - New Development for Automotive Test Systems
  • Readout No. E45 - Application Technology in Analysis
  • Readout No. E44 - Contribution of Diagnostics to Total Medical Care/Healthcare
  • Readout No. E43 - Watching the Environmental and Society with Measurements
  • Readout No. E42 - More Efficient Testing on Automotive Development, Improving the Accuracy of Fuel Consumption Measurement
  • Readout No. E41 - Application
  • Readout No. E40 - Application
  • Readout No. E18 - EUROPE
  • Readout No. E17 - AMERICA
  • Readout No. E16 - Chinese (Asia)
  • Readout No. E15 - Technologies for HORIBA STEC
  • Readout No. E14 - Masao HORIBA Awards"Measurement of Bioparticles" and "Measurement of Internal Combustion"
  • Readout No. E13 - Technologies for Automotive Testing
  • Readout No. E12 - Masao Horiba Awards "X-ray Analysis Technology"
  • Readout No. E11 - The Second Masao Horiba Awards
  • Readout No. E10 - Environmental Analysis Technologies for the Management of Global Environment and the Development of Industry
  • Readout No. E09 - The First Dr.Masao Horiba's Award and the 50th Anniversary Products
  • Readout No. E08 - Products and Technologies of HORIBA ABX
  • Readout No. E07 - Products and Technologies of Jobin Yvon HORIBA Group
  • Readout No. E06 - 50th Anniversary of HORIBA, Ltd. Products and Technology of HORIBA Group
  • Readout No. E05 - Semiconductor Instruments
  • Readout No. E04 - Hematology Instruments
  • Readout No. E03 - Paticulate Matter
  • Readout No. E02 - The Technology Alliance for X-ray Analysis
  • Readout No. E01 - the Analysis of the Global Environment
    HORIBA » 企业 » HORIBA全球 » Readout No. E47 - Application for Semiconductor Manufacturing Process 

Application for Semiconductor Manufacturing Process

Technical Journal "Readout"

Readout

READOUT is a technical journal issued by HORIBA. The name "READOUT" represents our sincere desire - helping readers understand the company's proprietary products and technologies by offering information about them. Since its first issue in July 1990, the journal has been published biannually.

Readout No. E47

Application for Semiconductor Manufacturing Process

PDF
1.75 MB
thumbnail
HORIBA’s DNA and Fluid Measurement Control Technology
Author: Hideyuki KOISHI; President & CEOHORIBA STEC, Co., Ltd., Senior Corporate Officer HORIBA, Ltd. – Abstruct: “Measurement” makes vague and ambiguous matters clarified. The HORIBA Group contributes to human society through measuring technologies related to the environment, health and life. In particular, HORIBA STEC, Co., Ltd. (HORIBA STEC) contributes to the development of the industry by evolving the technologies for accurate measurement and control of fluids.
open
PDF
1.99 MB
thumbnail
HORIBA Products for Semiconductor Manufacturing Process
Author: Seiji USUI; Managing Director HORIBA STEC, Co., Ltd., Junior Corporate Officer HORIBA, Ltd. – Abstruct: HORIBA has put many products out into the world as a manufacturer specialized in analyzers since the establishment of HORIBA, Ltd., in 1953. Since then, based on a wide variety of analysis measurement technologies we have cultivated, we have developed products, giving the first priority to meeting customer needs and applications and offering optimum products in each field. Currently, we are developing business with a focus on our analysis measurement technologies in the following five business fields: Automotive measurement, Environment and process, Science, Medical purpose, and Semiconductor (Figure 1).
open
PDF
1.84 MB
thumbnail
HORIBA STEC Products for Semiconductor Manufacturing Process
Author: Takeshi KAWANO; Corporate Officer & General Manager of Research & Development Division, HORIBA STEC, Co., Ltd. – Abstruct: HORIBA STEC, Co., Ltd., marketed the purely domestic Mass Flow Controller (hereinafter referred to as “MFC”) for the first time in Japan in1980. After that, the SEC-400 series and SEC-4400 series of MFCs were released, and their performance and quality were recognized by customers of semiconductor manufacturing tool manufacturers and semiconductor device manufacturers all over the world. So far, we have continuously developed and commercialized MFCs required in semiconductor processes. Today, semiconductor process-related products offered by HORIBA STEC Co., Ltd., are not only limited to MFCs but are also used in the measurement and control of flow, pressure, and concentration around process chambers. To provide solutions to customers, the number of products we offer as modules and subsystems, as well as parts and components, is increasing.
open
PDF
3.44 MB
thumbnail
Latest Device Processes and required sensing & control technologies in Semiconductor Chip Manufacturing
Author: Hiromichi ENAMI; Hitachi High-Technologies Corporation – Abstruct: In current and future semiconductor wafer manufacturing, CVD (Chemical Vapor Deposition)/ ALD (Atomic Layer Deposition) and Dry Etch are becoming key technologies. These technologies are utilized increasingly and are widely implemented due to feature size reduction and 3D structures requirements. In addition, there are Multiple competing requirements that are difficult to realize without these technologies but they are still insufficient and far from maturity. Therefore, the performance and capabilities of these technologies must be continuously improved. An innovative process sensing system and a fluctuation-free gas supply offer promising means to improve performance. In order to achieve this, collaboration and close development between equipment users, equipment suppliers, subsystem OEM (Original Equipment Manufacturer), and system solution providers is required and should be maintained.
open
PDF
1.9 MB
thumbnail
Establishment of New Flow Standard Technology
Author: Yasuhiro ISOBE; Fukuchiyama Technology Center, HORIBA STEC, Co., Ltd. – Abstruct: Higher accuracy and reliability for gas flow and liquid material supply are requested with the miniaturization and high integration of leading edge semiconductor device. To meet the requirement, at Kyoto Fukuchiyama technology center, we aim to establish flow standard technologies that are to develop flow standards, to standardize method of process gas flow measurement and to be accredited to ISO/IEC 17025 as a flow calibration authority. In this issue, we introduce our efforts for standardization of flow standard technology
open
PDF
1.7 MB
thumbnail
Pressure-Based Mass Flow Control Module CRITERION D507 Series
Author: Kentaro NAGAI; Development Design Dept. 1, HORIBA STEC, Co., Ltd. – Abstruct: Recently, with the increase of IoT applications for semiconductor devices, it is important to minimize process system downtime at front-edge device factories. Therefore parameters are increasing and criteria are tightening in their process line control, to detect system or component failures before their process execution. In order to satisfy these criteria, not only higher process gas flow control accuracy, minimal instrumental error, and pressure resistant flow control, but also high speed control communication and early anomaly detection are required for recent mass flow control modules. D507 series is newly lined up on D500 series to meet these strict specifications at recent semiconductor factories.
open
PDF
1.76 MB
thumbnail
Real-time Measurement of Cp2Mg Vapor Concentration using Non-Dispersive Infrared Spectroscopy
Author: Daisuke HAYASHI; Development Design Dept. 3, HORIBA STEC, Co., Ltd., Ph.D. – Abstruct: Vapor concentration of bis-cyclopentadienyl magnesium, which is used for fabrication of gallium-nitride semiconductor devices such as blue light-emitting diodes, was measured by using non-dispersive infrared (NDIR) spectroscopy. Different from conventional NDIR measurements, infrared absorbance at 12.8μm corresponding to C-H bending motion was utilized. From the measurement results, it becomes obvious that the vapor concentration was largely different from the concentration calculated from the saturation vapor pressure, and that the concentration and its dependence on carrier flow rate could be varied according to bubbler bottles. In this article, the detail of measurement technology along with experimental results is described.
open
PDF
2.79 MB
thumbnail
A Residual Gas Analyzer for Dry Etching Process
Author: Makoto MATSUHAMA; Advanced R&D Center, HORIBA, Ltd. – Abstruct: Concerning the dry process of the semiconductor device manufacturing, the monitoring of etching chamber conditions (pressure, temperature, gas concentration, ...) is crucial. This time, as a study of a new application, we examined the etching chamber management by using the residual gas analyzer. Generally using a residual gas analyzer in a dry etching apparatus which uses halogen-containing gas has been being avoided because of concerns such as sensors life. By confirming the residual gas component in the chamber before etching, it was possible to illuminate the cleaning process.
open
PDF
1.64 MB
thumbnail
Industrial In-line and Multi Component Monitor Using Absorption Spectroscopy and Its Application
Author: Yoko NAKAI; Application Development Dept., Research & Development Division, HORIBA Advanced Techno, Co., Ltd. – Abstruct: HORIBA’s CS-Series chemical concentration monitors that use ultraviolet (UV) and near-infrared (NIR) absorption spectroscopy are widely used in semiconductor wet processes, and make it possible to measure multiple components in line and in real time. The monitor can measure various types of samples, from general ammonia and hydrogen peroxide mixtures in semiconductor cleaning processes to 5-component chemistry including by-products from etching and metal ions in solutions, and things like CMP slurries including solid particles. This paper will introduce specific examples of applications.
open
PDF
1.8 MB
thumbnail
Conductivity Meter with Carbon Electrodes and Application for Densitometers Technologies for a Practical Densitometer
Author: Riichiro SUZUKI; Research & Development Division, HORIBA Advanced Techno, Co., Ltd. – Abstruct: HORIBA developed 2-pole electrical conductivity sensors with chemical-resistant carbon electrodes in 2002. These sensors are installed in semiconductor wet processes and are put into practical use as densitometers. In addition, HORIBA developed a new circuit for 4-pole conductivity measurement, which was an innovation that improved the precision with any 4-pole sensors. Concentration of single-component such as hydrofluoric acid or TMAH are measured based on precise electrical conductivity and temperature measurements. Temperature compensation calculations for the conductivity of the individual component are necessary to convert the conductivity into the concentration. Etching and developing solutions, etc. need to be controlled at a constant level, and the demand for various types of densitometers that use electrical conductivity systems is increasing.
open
PDF
1.94 MB
thumbnail
Dissolved Oxygen Monitor (HD-960L) for Semiconductor Wet Process
Author: Kentaro INOUE; Application Development Dept., Research & Development Division, HORIBA Advanced Techno, Co., Ltd. – Abstruct: The HD-960L dissolved oxygen monitor was launched for etching chemicals (HF and TMAH aqueous solutions) in semiconductor wet processes. The polarographic sensor has a guard electrode to improve the response in the low-concentration range. Optimizing the concentration of the electrolyte solution volume and configuring a current-restricting resistor for the guard electrode made it possible to measure high-temperature solutions and extend the life of the electrolyte solution. The evaluation test results showed that the saturated dissolved oxygen signal is not affected even if the chemical concentration changes, that the response to the concentration changing in the low-concentration range was fast enough, and that the signal was linear with respect to the concentration. A magnetic stirrer was installed in the flow chamber, which made it possible to take stable measurements of the dissolved oxygen, even in cases of samples with low flow rates.
open
PDF
1.23 MB
thumbnail
Development of Capacitance Diaphragm Gauge
Author: Sotaro KISHIDA; Development Design Dept. 2, HORIBA STEC, Co., Ltd. – Abstruct: In the deposition process or an etching process that made to be used for the fabrication of LEDs, semiconductors, FPDs and solar cells, various gases are used and the process pressure gives large effect on product quality, so the excellent corrosion resistance, and without gas dependent, and high accuracy are required to vacuum gauge . To provide solutions to these requests, HORIBA STEC has developed the Capacitance Diaphragm Gauge “VG-200 Series”, and the results of the performance evaluation were superior reproducibility and long term stability. Here, we describe the product features and performance evaluation results of the VG-200.
open
PDF
1.51 MB
thumbnail
Establishment and Application of Rapid Supply Method for SI-traceable Organic Standard Materials Using Standard Materials Calibration System
Author: Tomohiro SASAKI; Development Design Dept. 3, HORIBA STEC, Co., Ltd.; T. WATANABE; T. IHARA; T. YOSHIMURA; S. NARUKAMI – Abstruct: In order to ensure international consistency of analytical values, it is necessary to assure metrological traceability to international system of units (SI), whereas most of organic standard materials are not assured SI-traceability. New system, Standard Materials Calibration System, was developed in collaboration with HORIBA STEC Co., Ltd. and National Institute of Advanced Industrial Science and Technology (AIST). In this report, we studied new determination method which was easy and quick to assure SI-traceability to various analytes using this system.
open
  • 产品
    • 全部产品
    • 汽车
    • Energy and Envionment
    • Life Science
    • 医疗
    • Materials
    • 半导体
  • 应用
    • 饮用水处理监测
    • 汽车制造
    • 半导体制程
    • 研究所及分析测试中心
  • 技术
    • 辉光放电光谱
    • 四级质谱
    • 拉曼光谱
  • 服务
    • 现场支持
    • 备件和易耗品
  • 企业
    • 新闻
    • 活动
    • 招聘
    • 历史
    • 企业文化
  • 联系
    • 招聘联系
    • 联系表
    • 全球分公司
    • 投资者关系

条款和条件 隐私声明 Cookie HORIBA Group Social Media